

QIS4506013

Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

Single Discrete IGBT 65 Amperes / 4500 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
A	2.35	59.7
В	0.98	25.0
С	1.98	50.3
D	0.197	5.0
E	0.22	5.5
F	0.22	5.6
G	0.465	11.8
Н	0.27	6.9

Dimensions	Inches	Millimeters
J	0.93	23.6
К	0.14	3.6
L	0.20	5.2
М	0.40	1.0
Ν	0.43	11.0
Р	0.20	0.5
Q	0.12	3.0
R	0.208 Dia.	5.3 Dia.

Description:

Powerex Single Non-isolated Discrete is designed specially for customer high voltage switching and pulse power applications.

Features:

Low Drive	Requirement
-----------	-------------

- Low V_{CE(sat)}
- Non-Isolated Molybdenum Mounting Plate
- □ IGBT is designed to be used by being immersed in oil or conformal coated in assembly
- Advanced Mitsubishi R-Series Chip Technology

QIS4506013 Single Discrete IGBT 65 Amperes / 4500 Volts

Maximum Ratings, $T_i = 25$ °C unless otherwise specified

Ratings	Symbol	QIS4506013	Units
Collector Emitter Voltage	V _{CES}	4500	Volts
Gate Emitter Voltage	V _{GES}	±20	Volts
Collector Current (DC, T _C = 127°C)	Ι _C	65	Amperes
Peak Collector Current (Pulsed)	ICM	130	Amperes
Junction Temperature	Тj	-55 to 150	°C
Storage Temperature	T _{stg}	-55 to 125	°C
Mounting Torque, M5 Mounting Screws	_	30	in-lb
Weight (Typical)		20	Grams

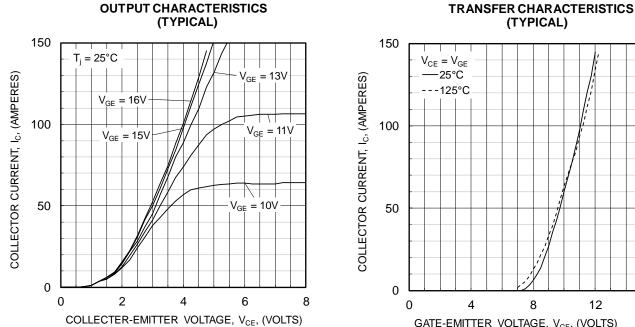
Static Electrical Characteristics, T_j = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector Cutoff Current	ICES	$V_{CE} = V_{CES}, V_{GE} = 0V$	_	_	1.0	mA
Gate Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0V$	_	_	0.5	μA
Gate-Emitter Threshold Voltage	V _{GE(th)}	$I_{C} = 7mA, V_{CE} = 10V$	5.8	6.3	6.8	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 65A, V _{GE} = 15V, T _j = 25°C	_	3.5	_	Volts
		I _C = 65A, V _{GE} = 15V, T _j = 125°C	_	4.4	5.1	Volts
Total Gate Charge	Q _G	$V_{CC} = 2800V, I_C = 65A, V_{GE} = 15V$	_	750	_	nC

Dynamic Electrical Characteristics, T_i = 25 °C unless otherwise specified

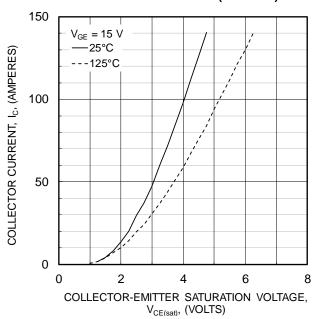
Characteristics	6	Symbol	ol Test Conditions		Тур.	Max.	Units
Input Capacitan	ce	Cies			9.7		nF
Output Capacitance		C_{oes} $V_{GE} = 0V, V_{CE} = 10V$		—	0.61	_	nF
Reverse Transfe	er Capacitance	C _{res}		_	0.28		nF
Resistive	Turn-on Delay Time	t _{d(on)}	T _j = 125°C,		0.95	1.5	μs
Load	Rise Time	t _r	$V_{CC} = 2800V, I_C = 65A,$	_	0.30	0.50	μs
Switching	Turn-off Delay Time	t _{d(off)}	$V_{GE1} = V_{GE2} = 15V, L_S = 150nH,$	_	3.8	5.0	μs
Times	Fall Time	t _f	$R_{G(on)} = 48.6\Omega, R_{G(off)} = 180\Omega$	_	0.45	1.0	μs
Turn-on Switching Energy		Eon	$T_j = 125^{\circ}C, I_C = 65A, V_{CC} = 2800V,$	_	275	_	mJ/P
Turn-off switchin	ng Energy	E _{off}	$V_{GE} = \pm 15V, L_S = 150nH$ R _{G(on)} = 48.6Ω, R _{G(off)} = 180Ω		220	—	mJ/P

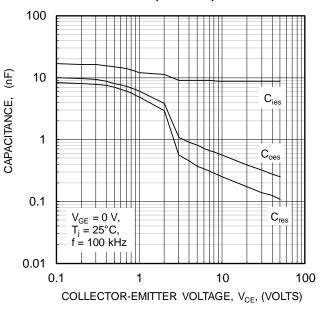
Thermal and Mechanical Characteristics, $T_j = 25$ °C unless otherwise specified


Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	IGBT	—	0.10	0.11	°C/W
Thermal Resistance, Case to Sink	R _{th(c-s)}	$\lambda_{grease} = 1W/mK$	—	0.10	—	°C/W
Thermal Crosse Applied						

Thermal Grease Applied

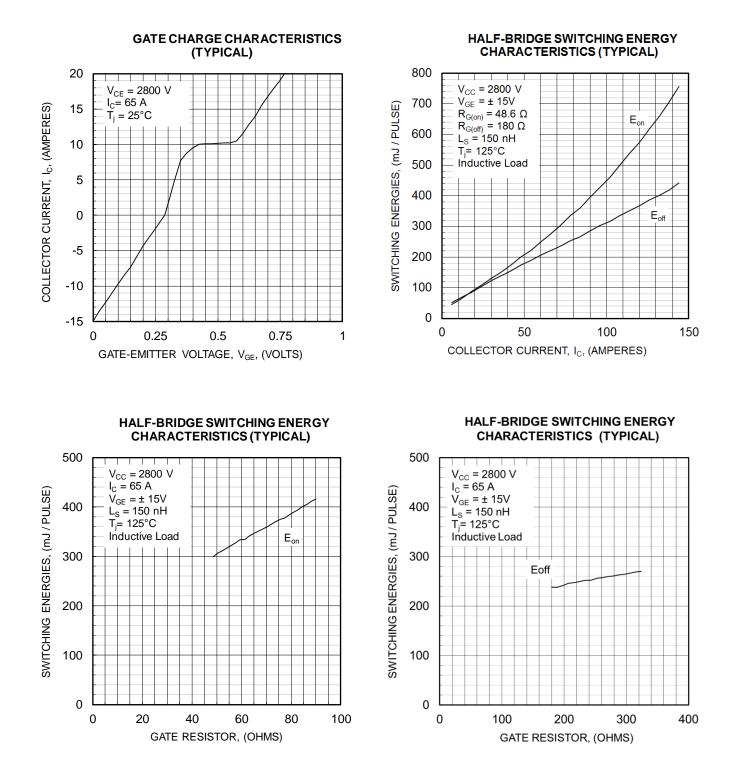
* Pulse width and repetition rate should be such that device junction temperature (T_j) does not exceed device rating. **Pulse width and repetition rate should be such that device junction temperature rise is negligible.


QIS4506013 Single Discrete IGBT 65 Amperes / 4500 Volts

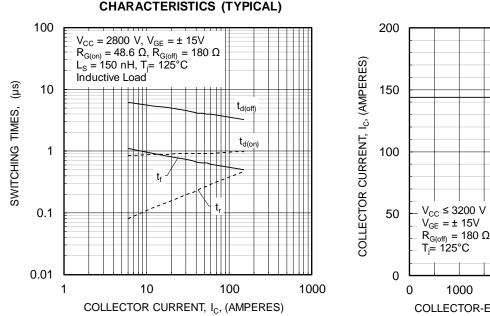

(TYPICAL) 8 12 16

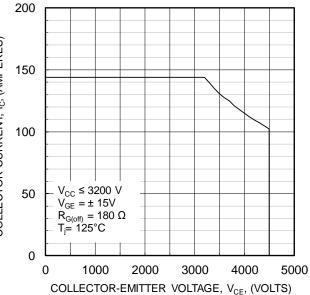
GATE-EMITTER VOLTAGE, V_{GE}, (VOLTS)

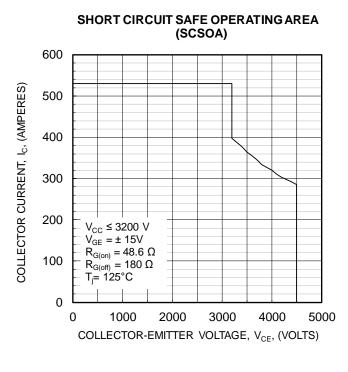
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)



CAPACITANCE CHARACTERISTICS (TYPICAL)

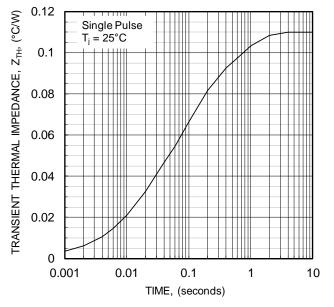

QIS4506013 Single Discrete IGBT 65 Amperes / 4500 Volts




HALF-BRIDGE SWITCHING TIME

QIS4506013 Single Discrete IGBT 65 Amperes / 4500 Volts

REVERSE BIAS SAFE OPERATING AREA (RBSOA)



QIS4506013 Single Discrete IGBT 65 Amperes / 4500 Volts

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL)

$Z_{th(j-c)}(t) = \sum_{i=1}^{n} R_i \left\{ 1 - \exp^{\left(\frac{-t}{\tau_i}\right)} \right\}$	<pre>}</pre>
--	--------------

	1	2	3	4
R_i	3.80E-04	1.29E-03	2.21E-02	8.39E-02
τ_i	3.33E-04	2.59E-03	1.15E-02	1.38E-01