

Features

- ESD protect for one line with bi-directional
- Provide transient protection for the protected line to

IEC 61000-4-2 (ESD) ±30kV (air), ±30kV (contact) IEC 61000-4-5 (Lightning) 5A (8/20μs)

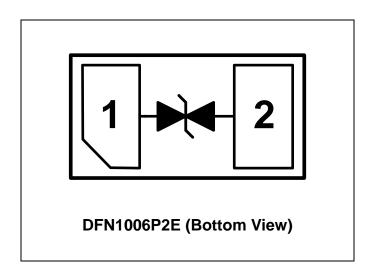
- Ultra-low capacitance: 0.4pF typical
- 0402 small DFN package saves board space
- Protect one I/O line or one power line
- Fast turn-on and low clamping voltage
- Suitable for, 8V and below, operating voltage applications
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part
- AEC-Q101 qualified

Applications

- Automotive applications
- Antenna applications
- USB3.0 / USB2.0
- High Definition Multi-media Interface (HDMI)
- Hand held portable applications
- High speed data interfaces

Description

AZ9568-01F is a design which includes a bi-directional ESD rated clamping cell to protect high speed data interfaces in an electronic systems. The AZ9568-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic Discharging (ESD) and Lightning.

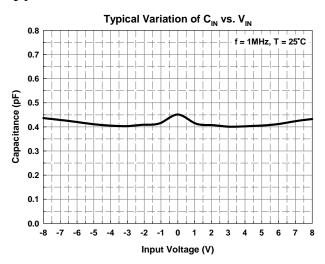

AZ9568-01F is a unique design which includes proprietary clamping cells with ultra-low capacitance in a small package. During transient conditions, the proprietary clamping cells prevent

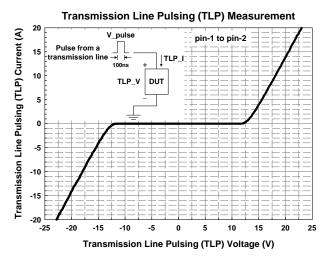
over-voltage on the control/data lines, protecting any downstream components.

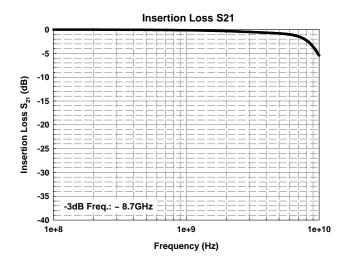
AZ9568-01F is bi-directional and may be used on lines where the signal swings above and below ground.

AZ9568-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge).

Circuit Diagram / Pin Configuration


SPECIFICATIONS


ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	RATING	UNIT	
Peak Pulse Current (tp = 8/20μs)	I _{PP}	5	А	
Operating Voltage	V_{DC}	±8.8	V	
ESD per IEC 61000-4-2 (Air)	V _{ESD-1}	±30	1417	
ESD per IEC 61000-4-2 (Contact)	V_{ESD-2}	±30	kV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	


ELECTRICAL CHARACTERISTICS PARAMETER SYMBOL MIN **TYP** MAX UNIT CONDITION Reverse Stand-Off T=25 °C. -8.0 8.0 V V_{RWM} Voltage Reverse Leakage $V_{RWM} = \pm 8V, T=25 \, {}^{\circ}C.$ 1.0 μΑ Leak Current Reverse Breakdown V_{BV} $I_{BV} = 1$ mA, T=25 °C. 10 V Voltage Surge Clamping ٧ 16 $V_{CL\text{-surge}}$ $I_{PP} = 5A$, $tp = 8/20\mu s$, $T=25^{\circ}C$. Voltage **ESD Clamping** IEC 61000-4-2 +8kV (I_{TLP} = 20 V $V_{\text{CL-ESD}}$ Voltage (Note 1) 16A), Contact mode, T=25 °C. **ESD Dynamic** IEC 61000-4-2, 0~+8kV, 0.5 $R_{\text{dynamic}} \\$ Ω Turn-on Resistance Contact mode, T=25 °C. **Channel Input** $V_R = 0V$, f = 1MHz, T=25 °C. C_{IN} 0.4 0.7 pF Capacitance

Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System. TLP conditions: Z_0 = 50 Ω , t_p = 100ns, t_r = 1ns.

Typical Characteristics

Application Information

The AZ9568-01F is designed to protect one line against system ESD pulses by clamping it to an acceptable reference. It provides bi-directional protection.

The usage of the AZ9568-01F is shown in Fig. 1. Protected line, such as data line, control line, or power line, is connected at pin 1. The pin 2 is connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ9568-01F should be kept as short as possible.

In order to obtain enough suppression of ESD induced transient, good circuit board is critical. Thus, the following guidelines are recommended:

- Minimize the path length between the protected lines and the AZ9568-01F.
- Place the AZ9568-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

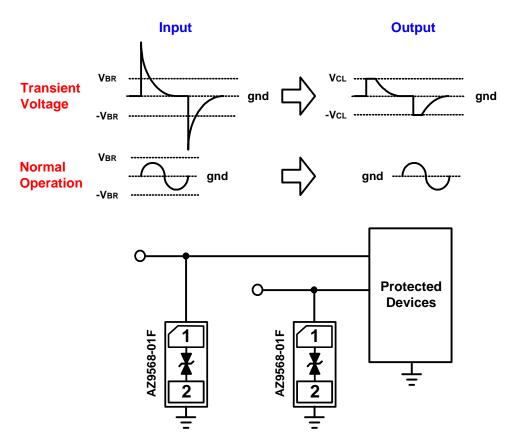
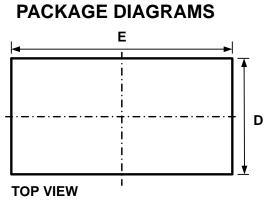
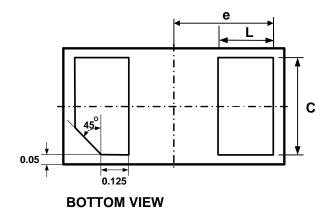
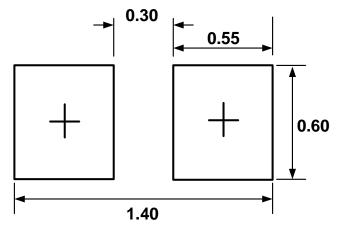



Fig. 1

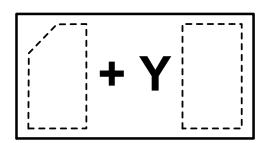


Mechanical Details


DFN1006P2E

SYMBOL	MILLIMETERS		
	MIN.	MAX.	
E	0.95	1.05	
D	0.55	0.65	
Α	0.45	0.55	
е	0.45	BSC	
L	0.20	0.30	
С	0.45	0.55	

LAND LAYOUT



(Unit: mm)

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

MARKING CODE

Top View

Y=Device Code

Part Number	Marking Code	
AZ9568-01F.R7GR (Green part)	Υ	

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Type	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ9568-01F.R7GR	Green	T/R	7 inch	12,000/reel	4 reels = 48,000/box	6 boxes = 288,000/carton

Revision History

Revision	Modification Description
Revision 2019/01/14	Preliminary release.
Revision 2020/08/14	Formal release.