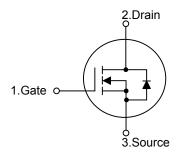


UTC UNISONIC TECHNOLOGIES CO., LTD

Preliminary

2.0A, 400V N-CHANNEL **POWER MOSFET**

DESCRIPTION

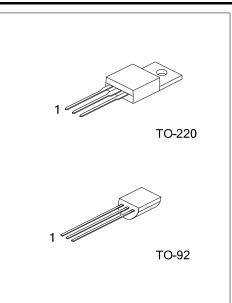

The UTC 2N40 is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance, stable off-state characteristics and superior switching performance. It also can withstand high energy pulse in the avalanche.

The UTC 2N40 is usually used in general purpose switching applications, motor control circuits and switched mode power supply.

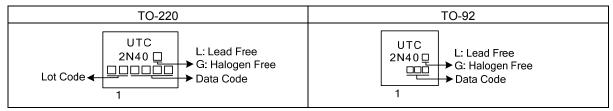
FEATURES

- * High switching speed
- * R_{DS(ON)} < 3.4Ω @ V_{GS}=10V, I_D=1.25A
- * 100% avalanche tested

SYMBOL



ORDERING INFORMATION


Ordering Number		Deekege	Pin Assignment			Decking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N40L-TA3-T	2N40G-TA3-T	TO-220	G	D	S	Tube	
2N40L-T92-B	2N40G-T92-B TO-92		G	D	S	Tape Box	
2N40L-T92-K	2N40G-T92-K	TO-92	G	D	S	Bulk	
Note: Pin Assignment: G: Gate D: Drain S: Source							

Note: Pin Assignment: G: Gate D: Drain S: Source

2N40L-TA3-T (1)Packing Typ (2)Package Typ (3)Green Packa	pe (2) TA3: TO-220, T92: TO-92

MARKING

■ ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	400	V
Gate-Source Voltage		V _{GSS}	±30	V
Drain Current	Continuous	I _D	2.5	А
	Pulsed	I _{DM}	10	А
Avalanche Current		I _{AR}	2.5	А
Single Pulsed Avalanche Energy		E _{AS}	100	mJ
Power Dissipation	TO-220		25	W
	TO-92	P _D	3	W
Junction Temperature		TJ	150	°C
Storage Temperature		T _{STG}	-55 ~ 150	°C

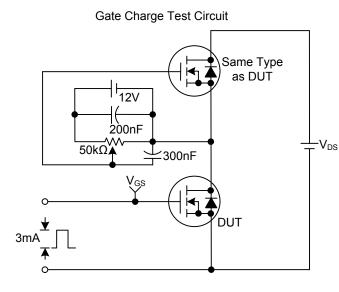
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature

3. L = 75mH, I_{AS} = 1.4A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

4. $I_{SD} \le 1.8A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

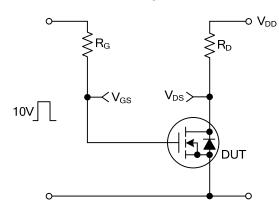
THERMAL DATA


PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220	0	62.5	°C/W	
	TO-92	θյΑ	140	°C/W	
Junction to Case	TO-220	θις	5	°C/W	
	TO-92		42	°C/W	

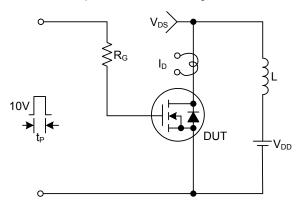
■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V	400			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =400V, V _{GS} =0V			1	μA
Cate Source Lookage Current Forward	- I _{GSS}	V _{GS} =+30V, V _{DS} =0V			+100	nA
Gate- Source Leakage Current Reverse		V _{GS} =-30V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	2.0		4.0	V
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.25A			3.4	Ω
DYNAMIC PARAMETERS						
Input Capacitance	CISS			240		рF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		44		рF
Reverse Transfer Capacitance	C _{RSS}			26		рF
SWITCHING PARAMETERS						
Total Gate Charge	Q _{G(TOT)}	V _{DS} =50V, V _{GS} =10V, I _D =1.3A , I _G =100µA (Note 1, 2)		20		nC
Gate to Source Charge	Q _{GS}			2		nC
Gate to Drain Charge	Q_{GD}	I_{G} = 100µA (Note 1, 2)		8		nC
Turn-ON Delay Time	t _{D(ON)}			10		ns
Rise Time	t _R	V_{DD} =30V, V_{GS} =10V, I_{D} =0.5A, R_{G} =25 Ω (Note 1, 2)		25		ns
Turn-OFF Delay Time	t _{D(OFF)}			46		ns
Fall-Time	t _F			25		ns
SOURCE- DRAIN DIODE RATINGS AND	CHARACTER	ISTICS				
Maximum Body-Diode Continuous Current	Is	T -25°C			2.5	А
Maximum Body-Diode Pulsed Current	I _{SM}	-T _C =25°C			10	А
Drain-Source Diode Forward Voltage	V _{SD}	I _S =2.5A, V _{GS} =0V			1.2	V
Body Diode Reverse Recovery Time	t _{rr}	I _S =2.5A, V _{GS} =0V,		200		ns
Body Diode Reverse Recovery Charge	Q _{rr}	dl/dt=100A/µs		2.0		μC

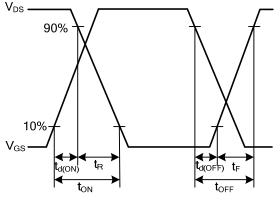
■ TEST CIRCUITS AND WAVEFORMS

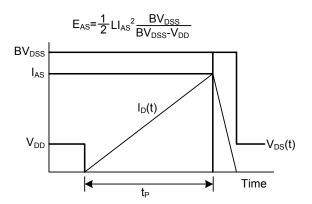


 V_{GS} 10V Q_{GS} Q_{GD}

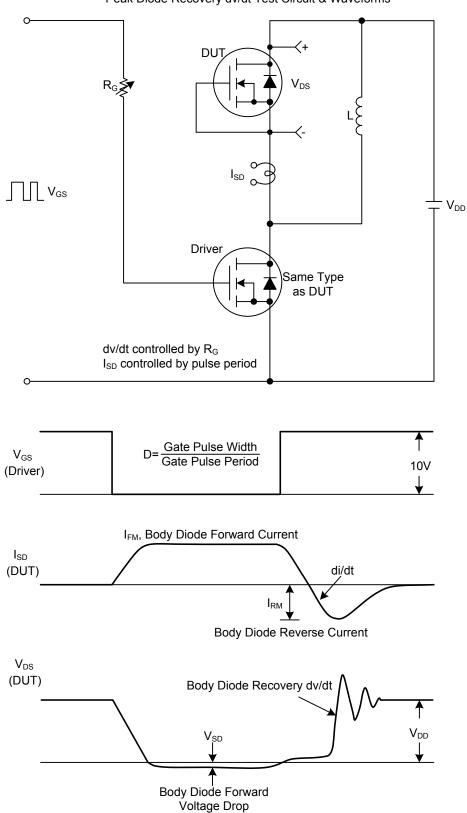

Charge

Gate Charge Waveforms


Resistive Switching Test Circuit


Unclamped Inductive Switching Test Circuit

Resistive Switching Waveforms



Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

Peak Diode Recovery dv/dt Test Circuit & Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

