

Single IGBTMOD™ NX-Series Module 600 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters		
Α	5.98	152.0		
В	2.44	62.0		
С	0.67	17.0		
D	5.39	137.0		
Е	4.79	121.7		
F	4.33±0.02	110.0±0.5		
G	3.89	99.0		
Н	3.72	94.5		
J	0.53	13.5		
K	0.15	3.8		
L	0.28	7.25		
M	0.30	7.75		
N	1.95	49.54		
Р	0.9	22.86		
Q	0.55	14.0		
R	0.87	22.0		
S	0.67	17.0		
Т	0.48	12.0		
U	0.24	6.0		
V	0.16	4.2		
W	0.37	6.5		
X	0.83	21.14		
Υ	M6	M6		

Dimensions	Inches	Millimeters
Z	1.53	39.0
AA	1.97±0.02	50.0±0.5
AB	2.26	57.5
AC	0.22 Dia.	5.5 Dia.
AD	0.67+0.04/-0.02	17.0+1.0/-0.5
AE	0.51	13.0
AF	0.27	7.0
AG	0.03	0.8
AH	0.81	20.5
AJ	0.12	3.0
AK	0.14	3.5
AL	0.21	5.4
AM	0.49	12.5
AN	0.15	3.81
AP	0.05	1.15
AQ	0.025	0.65
AR	0.29	7.4
AS	0.24	6.2
AT	0.17 Dia.	4.3 Dia.
AU	0.10 Dia.	2.5 Dia.
AV	0.08 Dia.	2.1 Dia.
AW	0.06	1.5
AX	0.49	12.5

Description:

Powerex IGBTMOD™ Modules are designed for use in switching applications. Each module consists of one IGBT Transistor in a single configuration with a reverse connected rectifier grade free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Low Drive Power
- ☐ Low V_{CE(sat)}
- ☐ Rectifier Grade Free-Wheel Diode
- ☐ Isolated Baseplate for Easy Heat Sinking

Applications:

- ☐ AC Motor Control
- ☐ Motion/Servo Control
- ☐ Photovoltaic/Fuel Cell

Ordering Information:

Example: Select the complete module number you desire from the table below -i.e.

QIS1260015 is a 1200V (V_{CES}), 600 Ampere Single IGBTMOD™ Power Module.

QIS1260015 Single IGBTMOD™ NX-Series Module 600 Amperes/1200 Volts

Absolute Maximum Ratings, T_i = 25°C unless otherwise specified

Characteristics	Symbol	QIS1260015	Units
Power Device Junction Temperature	Tj	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Mounting Torque, M5 Mounting Screws	_	31	in-lb
Mounting Torque, M6 Main Terminal Screws	_	40	in-lb
Module Weight (Typical)	_	330	Grams
Baseplate Flatness, On Centerline X, Y (See Below)	_	±0 ~ +100	μm
Isolation Voltage (Terminals to Baseplate, f = 60Hz, AC 1 minute)	V _{ISO}	2500	Volts

Inverter Sector

Collector-Emitter Voltage (V _{GE} = 0V)	V _{CES}	1200	Volts
Gate-Emitter Voltage (V _{CE} = 0V)	V _{GES}	±20	Volts
Collector Current (DC, T _C = 90°C)*1,*5,*9	I _C	600	Amperes
Peak Collector Current (Pulse)*4	I _{CM}	1200	Amperes
Maximum Collector Dissipation (T _C = 25°C)*1,*5	P _C	3785	Watts
Emitter Currentt (T _C = 25°C)*1,*5,*9	IE*3	600	Amperes
Peak Emitter Current (Pulse)*4	I _{EM} *3	1200	Amperes

^{*1} Case temperature (T_C) and heatsink temperature (T_f) measured point is just under the chips.

BASEPLATE FLATNESS MEASUREMENT POINT

CHIP LOCATION (TOP VIEW)

☐ IGBT ● FWDi ★ NTC Thermistor

Dimensions in mm (Tolerance: ± 1 mm)

^{**1} Case temperature (T_C) afto recussin temperature (T₁) measured points just a root are supported by the state of the

 $^{^*}$ 5 Junction temperature (T_j) should not increase beyond maximum junction temperature ($T_{j(max)}$) rating.

^{*9} Use both of each main terminal (collector and emitter) to connect external wiring.

QIS1260015 Single IGBTMOD™ NX-Series Module 600 Amperes/1200 Volts

Electrical and Mechanical Characteristics, T_i = 25°C unless otherwise specified

Inverter Sector

Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector Cutoff	Current	ICES	V _{CE} = V _{CES} , V _{GE} = 0V	_	_	1.0	mA
Gate-Emitter Th	reshold Voltage	V _{GE(th)}	I _C = 60mA, V _{CE} = 10V	6	7	8	Volts
Gate Leakage (Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0V$	_	_	0.5	μΑ
Collector-Emitte	er Saturation Voltage	V _{CE(sat)}	$I_C = 600A$, $V_{GE} = 15V$, $T_j = 25^{\circ}C^{*6}$	_	2.0	2.6	Volts
			$I_C = 600A$, $V_{GE} = 15V$, $T_j = 125$ °C*6	_	2.2	_	Volts
			$I_C = 600A$, $V_{GE} = 15V$, $T_j = 150^{\circ}C^{*6}$	_	1.9	_	Volts
Input Capacitan	nce	C _{ies}		_	_	100	nF
Output Capacita	ance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V$	_	_	9.0	nF
Reverse Transfe	er Capacitance	C _{res}		_	_	2.0	nF
Total Gate Char	rge	Q _G	V _{CC} = 600V, I _C = 600A, V _{GE} = 15V	_	3000	_	nC
Inductive	Turn-on Delay Time	t _{d(on)}	$V_{CC} = 600V, I_C = 600A,$	_	_	660	ns
Load	Turn-on Rise Time	t _r	V _{GE} = ±15V,	_	_	190	ns
Switch	Turn-off Delay Time	t _{d(off)}	$R_G = 2.2\Omega$, $I_E = 600A$,	_	_	700	ns
Time	Turn-off Fall Time	t _f	Inductive Loas Switching Operation	_	_	600	ns
Emitter-Collector Voltage		V _{EC} *3	$I_E = 600A$, $V_{GE} = 0V$, $T_j = 25^{\circ}C^{*6}$	_	1.0	1.2	Volts
			$I_E = 600A, V_{GE} = 0V, T_j = 125^{\circ}C^{*6}$	_	0.9	1.1	Volts

Thermal and Mechanical Characteristics, $T_i = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Module Lead Resistance	R _{lead}	Main Termnals-Chip (Per Switch)	_	0.6	_	mΩ
Thermal Resistance, Junction to Case*1	R _{th(j-c)} Q	Per IGBT	_	_	0.033	°C/W
Thermal Resistance, Junction to Case*1	R _{th(j-c)} D	Per FWDi	_	_	0.028	°C/W
Contact Thermal Resistance*1	R _{th(c-f)}	Thermal Grease Applied	_	0.015	_	°C/W
(Case to Heatsink)		(Per 1 Module)*2				
Internal Gate Resistance	R _{Gint}	T _C = 25°C	0.7	1.0	1.3	Ω
		T _C = 125°C	1.4	2.0	2.6	Ω
External Gate Resistance	R _G		1.0	_	10	Ω

NTC Thermistor Sector, $T_j = 25^{\circ}C$ unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Zero Power Resistance	R	T _C = 25°C	4.85	5.00	5.15	kΩ
Deviation of Resistance	ΔR/R	$T_C = 100^{\circ}C, R_{100} = 493\Omega$	-7.3	_	+7.8	%
B Constant	B _(25/50)	Approximate by Equation*9	_	3375	_	K
Power Dissipation	P ₂₅	T _C = 25°C	_	_	10	mW

^{*1} Case temperature (T_C) and heatsink temperature (T_f) measured point is just under the chips.

^{*2} Typical value is measured by using thermally conductive grease of $\lambda = 0.9$ [W/(m • K)].

^{*3} Represent ratings and characteristics of the anti-parallel, emitter-to-collector free wheeling diode (FWDi).

^{*6} Pulse width and repetition rate should be such as to cause negligible temperature rise.

^{*9} B_(25/50) = In($\frac{R_{25}}{R_{50}}$)/ $(\frac{1}{T_{25}} - \frac{1}{T_{50}})$ R₂₅; Resistance at Absolute Temperature T₂₅ [K], R₅₀; resistance at Absolute Temperature T₅₀ [K], T₂₅ = 25 [°C] + 273.15 = 298.15 [K], T₅₀ = 50 [°C] + 273.15 = 323.15 [K]

QIS1260015 Single IGBTMOD™ NX-Series Module 600 Amperes/1200 Volts

QIS1260015 Single IGBTMOD™ NX-Series Module 600 Amperes/1200 Volts

