

SPECIFICATION

PART NO. : OEL9M1003-L3-E

This specification may be changed without any notice in order to improve performance or quality etc.

Please contact OLED R&D department TRULY Semiconductors LTD. for updated specification and product status before designing for this product or releasing the order.

PRODUCT CONTENTS

- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

TRU	/LY®信利	Customer	
Written by	WangGui	App	roved by
Checked by	YangXueyu		
Approved by	ZhangWeicang		

TRULY ®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Dec.15, 2012

REVISION HISTORY

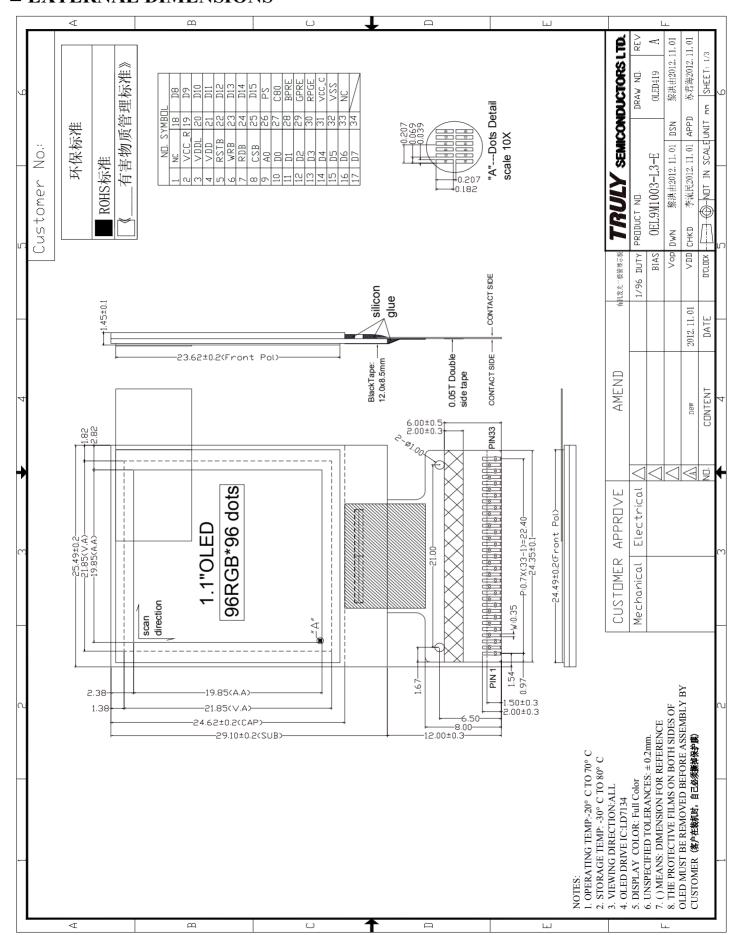
Rev.	Contents	Date
1.0	First release.	2012-12-15

■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	1.1	Inch
2	Resolution	96RGB * 96	Dots
3	Active Area	19.85(W) x 19.85(H)	mm ²
4	Outline Dimension (Panel)	25.49(W) x 29.10 (H)	mm ²
5	Pixel Pitch	0.207(W) x 0.207(H)	mm ²
6	Pixel Size	0.177(W) x 0.182(H)	mm ²
7	Driver IC	LD7134	-
8	Display Color	65K	-
9	Interface	6/8/16bit Parallel / SPI	-
10	IC package type	COG	-
11	Thickness	1.45 ± 0.1	mm
12	Weight	TBD	g
13	Duty	1/96	-

■ ABSOLUTE MAXIMUM RATINGS

Voltage Referenced to VSS


Items		Symbol	Min	Тур.	Max	Unit
Supply I/O Power		VDD	-0.3	-	3.6	V
Voltage	Driving	VCC_C	-0.3	-	18.3	V
Operating Temperature		Тор	-20	-	70	$^{\circ}$ C
Storage Temperature		Tst	-30	-	80	$^{\circ}$ C
Humidity		-	-	-	90	%RH

NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

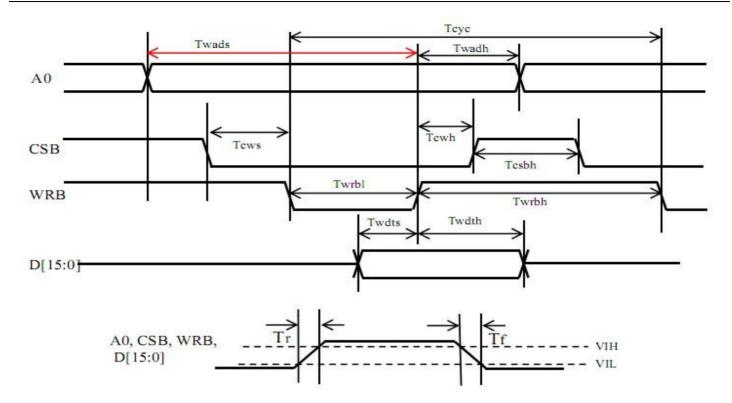
■ EXTERNAL DIMENSIONS

■ ELECTRICAL CHARACTERISTICS

◆ DC Characteristics

Unless otherwise specified, $V_{SS} = 0V$, $V_{CI} = 2.4V$ to 3.5V ($Ta = 25^{\circ}C$)

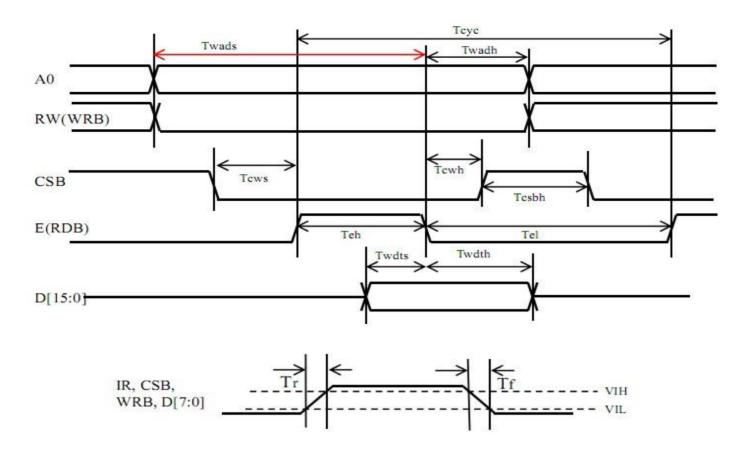
Items		Symbol	Min	Typ.	Max	Unit
Supply	Operating	VCC_C	8	15.0	18.0	V
Voltage	I/O Power	VDD	1.65	2.8	3.3	V
Input	High Voltage	V_{IH}	0.8 x VDD	-	VDD	V
Voltage	Low Voltage	$V_{ m IL}$	VSS	-	0.2 x VDD	V
Output	High Voltage	V_{OH}	0.9 x VDD	-	VDD	V
Voltage	Low Voltage	V_{OL}	VSS	-	0.1 x VDD	V


◆AC Characteristics

♦ 8080-Series MCU Parallel Interface Timing Characteristics

Writing Timing for 80Series CPU

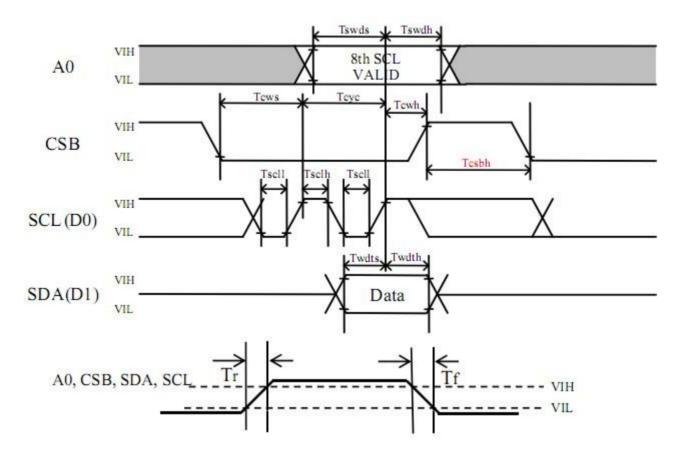
Donomaton	Crumb at	Related Pins	Specification		** **
Parameter	Symbol Related Pins		MIN	MAX	Unit
Write Cycle Time	Teye	WRB	100		ns
Address Setup Time	Twads	A0	50		ns
Address Hold Time	Twadh	A0	20		ns
Select Setup Time	Tews	CSB	10		ns
Select Hold Time	Tewh	CSB	20		ns
Write Low Pulse Width	Twrbl	WRB	30	ľ	ns
Write High Pulse Width	Twrbh	WRB	40	ľ	ns
Select High Pulse Width	Tesbh	CSB	10		ns
Data Setup Time	Twdts	D15 ~ D0	10		ns
Data Hold Time	Twdth	D15 ~ D0	30		ns
Rising Time	Tr	A0, CSB, WRB, D15 ~ D0 - 30		30	ns
Falling Time	Tf	A0, CSB, WRB, D15 ~ D0	(*)	30	ns



6800-series parallel interface characteristics

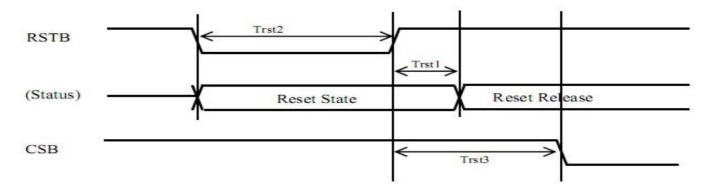
Writing Timing for 68 Series CPU

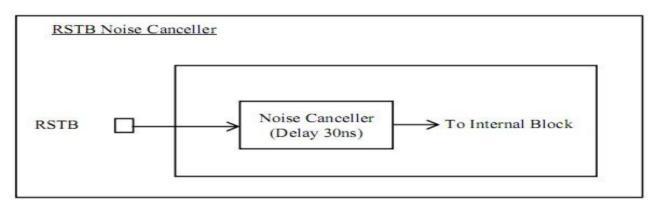
Parameter	Cross had	Related Pins	Specification		Unit
Parameter	Symbol	Symbol Related Pins		MAX	Onit
Write Cycle Time	Teye	Е	100	14	ns
Address Setup Time	Twads	A0, RW	50		ns
Address Hold Time	Twadh	A0, RW	20		ns
Select Setup Time	Tews	CSB	10		ns
Select Hold Time	Tewh	CSB	20		ns
Write Low Pulse Width	Tel	E	40		ns
Write High Pulse Width	Teh	E	30		ns
Select High Pulse Width	Tesbh	CSB	10		ns
Data Setup Time	Twdts	D15 ~ D0	10		ns
Data Hold Time	Twdth	D15 ~ D0	30		ns
Rising Time	Tr	Tr A0, CSB, RW, E, D15 ~ D0 - 30		30	ns
Falling Time	Tf	A0, CSB, RW, E, D15 ~ D0	10+1	30	ns



♦Serial Interface Timing Characteristics

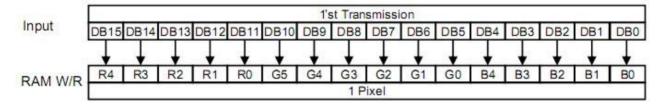
Devenuetes	Comples!	Related Pins	Specification		T TOO TO
Parameter	Symbol	Related Pins	MIN	MAX	Uni
Write Cycle Time	Teye	SCL(D0)	100	-	ns
Address Setup Time	Tswds	A0	65		ns
Address Hold Time	Tswdh	A0	35		ns
Select Setup Time	Tews	CSB	65		ns
Select Hold Time	Tewh	CSB	35		ns
SCL Low Pulse Width	Tscll	SCL(D0)	45		ns
Write High Pulse Width	Tsclh	SCL(D0)	45		ns
Select High Pulse Width	Tesbh	CSB	30		ns
Data Setup Time	Twdts	SDA(D1)	20		ns
Data Hold Time	Twdth	SDA(D1)	30		ns
Rising Time	Tr	A0, CSB, SDA, SCL		30	ns
Falling Time	Tf	A0, CSB, SDA, SCL	(15)	30	ns

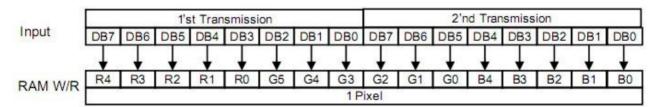



Reset Timing

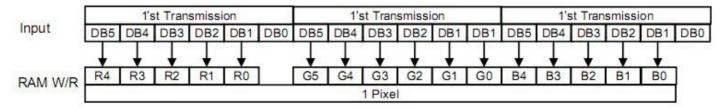
Parameter	Symbol	Related Pins	Specif	Unit		
T di differen	Symbol Related Fins		MIN	MAX	Cint	
The completion Time of Reset	Trst1	RSTB	30 (Typ.)		ns	
Reset Low Pulse Width	Trst2	RSTB	1000		ns	
RSTB non-overlap to CSB	Trst3	RSTB, CSB	100		ns	

^{*} RSTB pad ignores typically the pulse width less than 30ns.

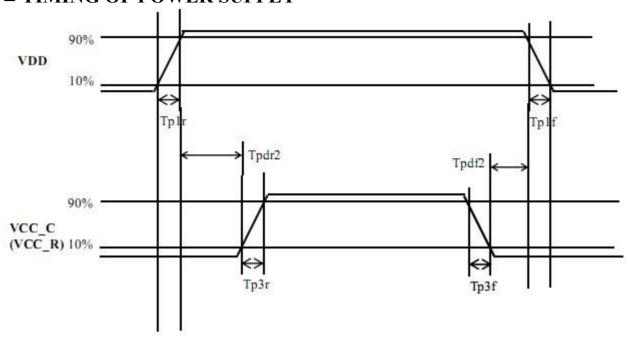




◆Read/Write Dot matrix Display Data


16-Bit I/F(65K color)

8-Bit I/F(65K color)



6-Bit I/F(65K color)

■ TIMING OF POWER SUPPLY

(Ta = -40 ~ +85 °C, VSSA=VSSD=0V, VDD=2.8V, VCC_C=VCC_R=18V, R/G/BPRE=0V, CL=100pF)

Parameter	Symbol	Related Pins		Unit		
raiameter	Symbol	Related Fills	MIN	TYP	MAX	Clist
VDD On Slope VDD Off Slope	Tp1r Tp1f	VDD	0.2	1	5	ms/V
VCC_C(VCC_R) On Slope VCC_C(VCC_R) Off Slope	Tp3r Tp3f	VCC_C(VCC_R)	0.2	1	5	ms/V
From VDD to VCC_C(VCC_R) Delay	Tpdr2	VDD, VCC_C(VCC_R)	2			ms
From VCC_C(VCC_R) to VDD Delay	Tpdf2	VDD, VCC_C(VCC_R)	2	•	Σ .	ms

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Iten	ns	Symbol	Min.	Тур.	Max.	Unit	Remark
Lumin	ance	L	80	100	-	cd/m ²	With Polarizer All pixels on
Pow Consum	_	P	-	375	490	mW	30% pixels On
Frame Fre	equency	Fr	-	105	-	Hz	-
		CIE x CIE y	0.26 0.29	0.30 0.33	0.34 0.37		White
		CIE x CIE y	0.60 0.31	0.64 0.35	0.68 0.39	CIE1931	Red
Color Coo	ordinate	CIE x CIE y	0.26 0.57	0.30 0.61	0.34 0.65		Green
		CIE x CIE y	0.11 0.11	0.15 0.15	0.19 0.19		Blue
Response	Rise	Tr	-	-	0.02	ms	-
Time	Decay	Td	-	-	0.02	ms	-
Contrast	Ratio*	Cr	5000:1	-	-	-	With Polarizer
Viewing	Angle	θ	170	-	-	Degree	-
Operatin Time	_	Тор	10,000	_	_	Hours	-

Note:

1. 100 cd/m² test condition:

Voltage driving: VDD= 3V, VCC_C= 15V;

Contrast Setting:

Red contrast: 0X60: Green contrast: 0X54; Blue contrast: 0X68:

2. **Contrast ratio** is defined as follows:

Contrast ratio = Photo – detector output with OLED being "white" Photo – detector output with OLED being "black"

3. Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternatively displayed) (The initial value should be closed to the typical value after adjusting.)

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description
1	NC	No connection
2	VCC_R	This pin is the power output pin of internal row power regulator. A 4.7uF capacitor is recommended to connect between VCC_R and GND. If internal row power regulator is disabled, It must be connected to the external high voltage source.
3	VDDL	Internal Logic Power. Capacitor is connected between VDDL and VSSD
4	VDD	Interface Power & Analog Power
5	RSTB	Reset (Active Low)
6	WRB	Write (Active Low) for 80 Series, H: Read, L: Write for 68 Series
7	RDB	Read (Active Low) for 80 Series, Read or Write Enable for 68 Series
8	CSB	Chip Select (Active Low)
9	A0	Address (L: command, H: Parameter)
10- 25	D0-D15	Data Bus;D0 isData Bus or Clock Input for Serial Interface, D1 is Data Bus or Data Input for Serial Interface.
26	PS	H: Parallel L: Serial
27	C80	H: 68CPU L: 80CPU
28	BPRE	Column Driver Pre-Charge Power for Red
29	GPRE	Column Driver Pre-Charge Power for Green
30	RRE	Column Driver Pre-Charge Power for Blue
31	VCC_C	Column Driver Power
32	VSS	Gound
33	NC	No connection

MCU Bus Interface Pin Selection:

Select appropriate logic setting as described in the following table.

	C80	PS
8080	0	1
6800	1	1
sesial	0	0

Note

- (1) 0 is connected to VSS
- (2) 1 is connected to VDD

TRULY ®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Dec.15, 2012

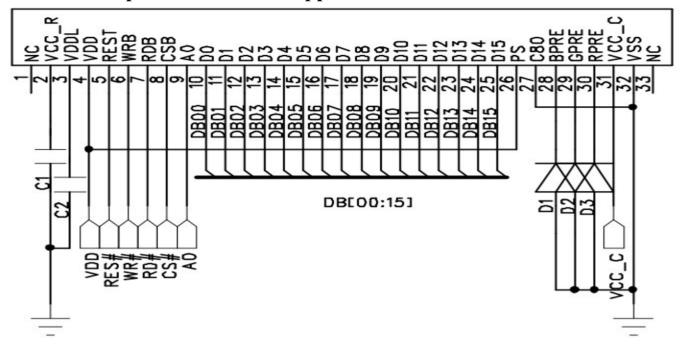
■ COMMAND TABLE

Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
01h	SOFTRES	19	. 85	390	*	-	. *	. 35	390	
02h	DDISPON/OFF		3 2	3.43	- 85		. 19		D0	00h
03 h	DSTBYON/OFF	0 N		1949	000	×	. *	32	D0	01h
04h	DFRAME	(C) (C)	12	848	1940	M	F2	FI	F0	02h
05h	WriteDirection	20	1 32	843	520	D3	D2	Dl	D0	00h
06h	ScanDirection	-83	- 22	120	727	23	* ·	12	D0	00h
		. 18	* 		1.53%	ē.	FX8	FX7	FX6	00h
		10	ø	FX5	FX4	FX3	FX2	FX1	FX0	00h
		ō.	. a	858	- 26		TX8	TX7	TX6	04h
07h	DispSize		ST.	TX5	TX4	TX3	TX2	TX1	TX0	1Fh
0711	Dispsize		. 25		856	8	FY6	FY5	FY4	00h
		12	25	858	253	FY3	FY2	FYI	FY0	00h
		20	, SE	828	25	123	TY6	TY5	TY4	05h
		, N	38	343	- 20	TY3	TY2	TYI	TY0	0Fh
08h	IF_BUS_SEL	6 5 E	34	328	949	¥ 6	3	D1	10	00h
09h	Data_Masking	(S) (S)	124	548	RV	80	R	G	В	07h
		2	1 THE	848	S#3	2	XS6	XS5	XS4	00h
		** 12	120	1923	25	XS3	XS2	XSI	XS0	00h
		. 8	ø		88	8	XE6	XE5	XE4	05h
0.11	MD 6	· ·	, a	858		XE3	XE2	XEI	XE0	0Fh
0Ah	MBoxSize		. a	858	35		YS6	YS5	YS4	00h
			. 15	250	8.50	YS3	YS2	YS1	YS0	00h
		191	35	3(*)	- 85		YE6	YE5	YE4	05h
		78	32	10-11	0(40)	YE3	YE2	YEI	YE0	0Fh
		, S2	. 14	528	848	13	DX8	DX7	DX6	00h
1222		3 <u>22</u>	32	DX5	DX4	DX3	DX2	DX1	DX0	00h
0Bh	DISPStart	E 83	· 22	196	720	2	DY6	DY5	DY4	00h
			g g	3.50		DY3	DY2	DYI	DY0	00h

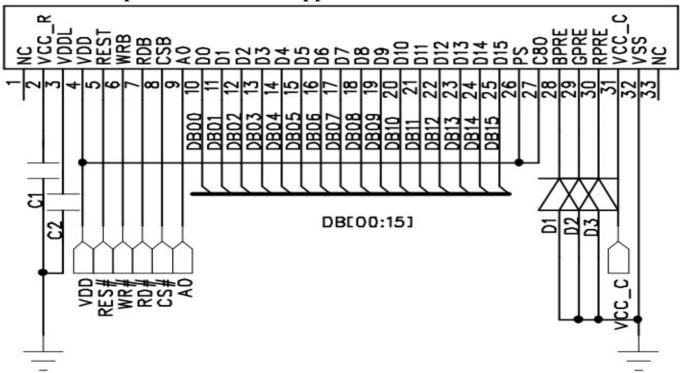
Address	Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0	Defaul
0Ch	DataWrite/Read	D7	D6	D5	D4	D3	D2	D1	D0	*
0Dh	READREG	D7	D6	D5	D4	D3	D2	D1	D0	×
- 6		14	\$ -	84	5.23	IR7	IR6	IR5	IR4	00h
		2	12	141	188	IR3	IR2	IR1	IR0	00h
0Eh	DotCurrent	32	12	32.1		IG7	IG6	IG5	IG4	00h
UER	Dotcurent		5	357		IG3	IG2	IG1	IG0	00 h
		15	38.0	351		IB7	IB6	IB5	IB4	00 h
		æ		131	. 88	IB3	1B2	IB1	IB0	00h
0Fh	PeakCurrent		250	PR5	PR4	PR3	PR2	PR1	PR0	00h
		85		PG5	PG4	PG3	PG2	PG1	PG0	00h
		35	858	PB5	PB4	PB3	PB2	PBI	PB0	00h
1Ch	PreC_Width	, a	17	D5	D4	D3	D2	D1	D0	08h
1Dh			85	D5	D4	D3	D2	D1	D0	05h
	Peak Width	39		D5	D4	D3	D2	D1	D0	05 h
		· 84	14	D5	D4	D3	D2	D1	D0	05h
1Eh	PeakDelay	14	(4)	84	e 0	D3	D2	DI	D0	05h
1Fh	Row_Scan	° 22	12	D5	D4	D3	100	D1	D0	00h
30h	VCC_R_SEL	82	14	120	EN	323	D2	DI	D0	04h
3Ah	Gamma_Tune	1 32	12.1	12.5		13	12	11	10	00h
3Bh	Gamma_Init	, is	35	351		S	8	37.0	1570	3
3Dh	DMODE	15	55	15E		S	8	D1	D0	00 h
3Eh	TEST	- 27		931.1	3.5	75	10	D1	D0	00h

■ INITIALIZATION CODE

```
void InitOLED LD7134()
WMOLED COM(0x02);//display off
WMOLED DATA(0x00);
WMOLED COM(0x01); //software reset The OSC.is stopped.
WMOLED COM(0x03);
WMOLED DATA(0x00);
WMOLED COM(0x04);// Set OSC Control
WMOLED DATA(0x03):
WMOLED COM(0x05);// Set Graphic RAM Writing Direction
WMOLED DATA(0x00);
WMOLED COM(0x06);// Set Row Scan Direction
WMOLED DATA(0x00);
WMOLED COM(0x07);// Set Display Size
WMOLED DATA(0x00);
WMOLED DATA(0x00);
WMOLED DATA(0x04):
WMOLED DATA(0x1F);
WMOLED DATA(0x00);
WMOLED DATA(0x00);
WMOLED DATA(0x05);
WMOLED DATA(0x0F);
WMOLED COM(0x08);// Set Interface Bus Type
WMOLED DATA(0x03);
WMOLED COM(0x09);// Set Masking Data
WMOLED DATA(0x07);
WMOLED COM(0x0A);// Set Read/Write Box Data
WMOLED DATA(0x00);
WMOLED DATA(0x00);
WMOLED DATA(0x05);
WMOLED DATA(0x0F);
WMOLED DATA(0x00);
WMOLED DATA(0x00);
WMOLED DATA(0x05);
WMOLED DATA(0x0F);
WMOLED COM(0x0B);// Set Display Start Address
WMOLED DATA(0x00):
WMOLED DATA(0x00);
WMOLED DATA(0x00);
WMOLED DATA(0x00);
```

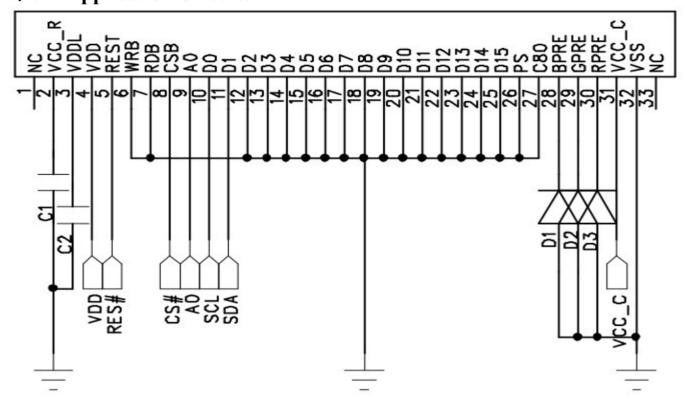



```
WMOLED COM(0x0E); //Set Dot Matrix Current Level
WMOLED DATA(0x06);
WMOLED DATA(0x00);
WMOLED DATA(0x05):
WMOLED DATA(0x04);
WMOLED DATA(0x06);
WMOLED DATA(0x08);
WMOLED COM(0x0F); //Set Dot Matrix Peak Current Level
WMOLED DATA(0x00);
WMOLED DATA(0x00):
WMOLED DATA(0x00);
WMOLED COM(0x1C); //Set Pre-Charge Width
WMOLED DATA(0x08);
WMOLED COM(0x1D); //Set Peak Pulse Width;Parameter Range :01h-3fh
WMOLED DATA(0x05): //for Red
WMOLED DATA(0x05); //for Green
WMOLED DATA(0x05); //for Blue
WMOLED COM(0x1E); //Set Peak Pulse Delay
WMOLED DATA(0x01); //01h-0fh
WMOLED COM(0x1F);//Set Row Scan Operation
WMOLED DATA(0x00);
WMOLED COM(0x30);//Set Internal Regulator for Row Scan
WMOLED DATA(0x10);
WMOLED COM(0x3B); //Set Gamma Correction Table Initialize
WMOLED COM(0x3C);//Set VDD Selection
WMOLED DATA(0x00);
WMOLED COM(0x3D);//Set DMODE Selection
WMOLED DATA(0x00);
WMOLED COM(0x02);//display on
WMOLED DATA(0x01);
```



■ SCHEMATIC EXAMPLE

16-bit 8080 parallel Interface Application Circuit:



16-bit 6800 parallel Interface Application Circuit:

♦SPI Application Circuit:

C1=C2=4.7uF; D1=D2=D3=Vz=3V(Zener diode)

P.19 / 25

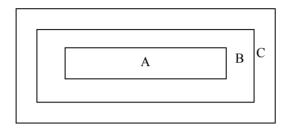
TRULY[®]信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0

■ RELIABILITY TESTS

	Item	Condition	Criterion		
High Temperature Storage (HTS)		80±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. After testing, the change of luminance should be within +/- 50% of initial value. After testing, the change for the mono and area color must be within (+/-0.02, +/- 		
High Temperature Operating (HTO)		70±2°C, 96 hours			
Low Temperature Storage (LTS)		-30±2°C, 200 hours			
Low Temperature Operating (LTO)		-20±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of initial value based on		
High Temperature / High Humidity Storage (HTHHS)		50±3°C, 90%±3%RH, 120 hours	1931 CIE coordinates. 5. After testing, the change of total current consumption should be		
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	within +/- 50% of initial value.		
Vibration (Packing)	(Packing) de 1.5mm, 1 nour for each direction x, y, z 1. One bo		and the electrical defeats		
Drop (Packing)	Height: 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic and the electrical			
ESD (finished product housing)	finished product 150pF, 10times, air discharge) 2. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance> $10M\Omega$).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■ OUTGOING QUALITY CONTROL SPECIFICATION

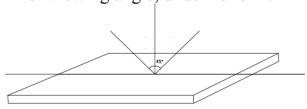
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25±5°C.

♦Inspection Criteria

1 Major defect: AOL= 0.65

Item	Criterion	
F D.C.	1. No display or abnormal display is not accepted	
Function Defect 2. Open or short is not accepted.		
	3. Power consumption exceeding the spec is not accepted.	
Outline Dimension	Outline dimension exceeding the spec is not accepted.	
Glass Crack	Glass crack tends to enlarge is not accepted.	

TRULY ®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Dec.15, 2012

2 Minor Defect : AQL= 1.5

Item	Criterion						
	Size	(mm)	Accepted Qty				
Spot			Area A + Area B	Area C			
Defect (dimming		Φ≦0.07	Ignored				
and	Y	$0.07 < \Phi \le 0.10$	3				
lighting	X	0.10<Φ≦0.15	1	Ignored			
spot)	-	0.15<Ф	0				
	Note: $\Phi = (x + y) /$	2					
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C			
Defect	/	W ≤ 0.02	Ignored				
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2	_			
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored			
line)	/	0.05 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect				
Polarizer Stain	Stain which can be wiped off lightly with a soft cloth or similar cleaning is accepted, otherwise, according to the Spot Defect and the Line Defect.						
	1. If scratch can be seen during operation, according to the criterio of the Spot Defect and the Line Defect. 2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:						
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C			
Scratch	/	W ≤ 0.02	Ignore				
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2				
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore			
	/	0.06 <w< td=""><td>0</td><td></td></w<>	0				
	Si	ze	Area A + Area B	Area C			
Dalaninan		Φ≦0.20	Ignored				
Polarizer Air Bubble	Y	$0.20 < \Phi \le 0.30$	2				
THI DUOUL	X	$0.30 < \Phi \le 0.50$	1	Ignored			
		0.50<⊕	0				

	1 On the corner		
	1. On the corner	(mm)	
		(111111)	
		X	≤ 1.5
			<u>− 1.5</u> ≤ 1.5
		У	
	***	Z	$\leq t$
	z		
	2. On the bonding edge		
Defect			
(Glass		(mm)	
Chiped)	A Y	X	≤ a / 4
			$\leq s / 3 \& \leq 0.7$
		У	
	ty the state of th	Z	<u>≤ t</u>
	The state of the s		
	3. On the other edges		
	J= 42	(mm)	
		X	≤ a / 8
			≤ 0.7
		У	
		Z	<u>≤t</u>
	Note: t: glass thickness; s: pad width; a: the	length of	the edge
TCP Defect	Crack, deep fold and deep pressure mark on t	the TCP a	re not accepted
TPIXELSIZE I	The tolerance of display pixel dimension shapes the spec	ould be v	within ±20% of
Luminance	Refer to the spec or the reference sample		
Color	Refer to the spec or the reference sample		

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.

2. Soldering time: 3-4 sec.

3. Repeating time: no more than 3 times.

4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

♦ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0° C and 30° C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material, process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.