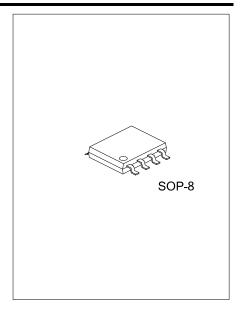


UTC UNISONIC TECHNOLOGIES CO., LTD

UTRS458 CMOS IC

POLARITY FREE, FAIL-SAFE, 500KBPS, RS-485 / RS-422 TRANSCEIVERS WITH ±12KV **ESD-PROTECTED**

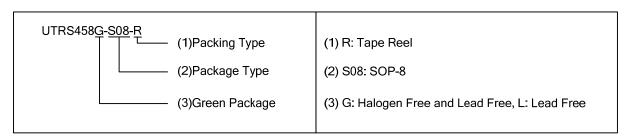

DESCRIPTION

The UTC UTRS458 is a Polarity-Free half-duplex transceiver designed for RS-485 data bus network, which contains one transmitter and one receiver. The UTC UTRS458 features a fail-safe receiver, which guarantees the receiver to output high when the receiver inputs are open, short or idle.

The UTC UTRS458 can automatically detect the polarity for A and B pins when pull-high for A and pull-low for B have been designed on the RS485 bus. The detection function is real-time monitored the bus polarity without any data flow on the RS485 bus.

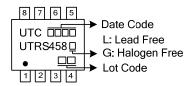
The UTC UTRS458 also features a hot-swap glitch free protection circuits which guarantee outputs of both the transmitter and the receiver in a high impedance state during the power up period. So that the large short current from power to ground will be disable by glitch free function, which will save the power and enhance the efficiency of the power up.

The UTC UTRS458 is optimized for signal rates up to 500Kbps with differential voltage of 2.3V. The UTC UTRS458 also has the thermal shutdown function when the temperature is over 150°C and the protection of the current limitation in the transmitter to protect the itself from the damage by the system-fault conditions during normal operation.

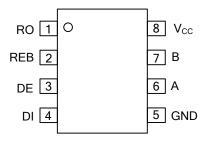


FEATURES

- * Meet the requirements of the EIA/TIA-485 standards.
- * 5.0V single power supply.
- * 1µA low-current shutdown mode.
- * HBM ±12kV ESD protection for Transmitter Output
- * True fail-safe receiver while maintaining EIA/TIA-485 compatibility.
- * Hot-swap glitch free protection on control inputs.
- * Up to 256 transceivers on the bus.
- * Maximum baud rate up to 500Kbps.
- * Transmitter short circuit current limit.
- * Thermal shutdown for overload protection.
- * Polarity-Free for RS485 bus pins.

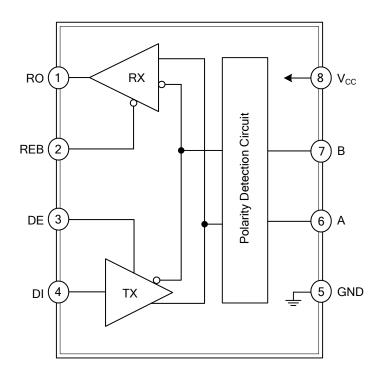

ORDERING INFORMATION

Ordering Number Lead Free Halogen Free		Dookaga	Packing	
		Package		
UTRS458L-S08-R	UTRS458G-S08-R	SOP-8	Tape Reel	



www.unisonic.com.tw 1 of 8

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	RO	Receiver output.		
2	REB	Receiver output enable: REB is low to enable the Receiver; REB is high to disable the Receiver.		
3	DE	Transmitter output enable: DE is high to enable the transmitter; DE is low to disable the transmitter.		
4	DI	DI Transmitter input: When DE is high, a low on DI forces An output low and B output high Similarly, a high on DI forces An output high and B output low.		
5	GND	Ground pin. Must be connected to 0V.		
6	Α	Non-inverting receiver input and non-inverting transmitter output		
7	В	Inverting receiver input and inverting transmitter output		
8	V_{CC}	Power supply Input 5.0V.		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply V _{CC}	V_{CC}	-0.3 ~ 7.0	V
Control Input Voltage	REB, DE	-0.3 ~ V _{CC}	V
Receiver Input Voltage	A, B	±12.5	V
Receiver Output Voltage	RO	-0.3 ~ V _{CC}	V
Transmitter Output Voltage	A, B	±12.5	V
Transmitter Input	DI	-0.3 ~ V _{CC}	V
Operating Temperature	T _{OP}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are only stress ratings and it is not implied for functional device operation.

Absolute maximum ratings are the values beyond which the device will be damaged permanently.

■ DC ELECTRICAL CHARACTERISTICS

 $(V_{CC}=5.0V \pm 5\%$ with $T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $V_{CC}=5.0V$ and $T_A=25^{\circ}C$)

1 00 0101 =0 70 IIIII IA IMINI E	· WIAN, Giring	ee etherwiee hetea. Typical valuee are at vec	, 0.0 v u		<u>-0 0, </u>	
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
TRANSMITTER						
Differential Transmitter Output	V _{OD1}	No Load			5.0	V
Differential Transmitter Output	V_{OD2}	Fig.1, R _L =27Ω				V
Change in Magnitude of Differential Output Voltage	ΔV_{OD}	Fig.1, R_L =27 Ω			0.2	V
Transmitter Common- Mode Output Voltage	V _{oc}	Fig.1, R_L =27 Ω			3.0	V
Change in Magnitude of Common- Mode Voltage	ΔV_{OC}	Fig.1, R_L =27 Ω			0.2	V
Input High Voltage	V _{IH}	DE, DI, REB	2.0			V
Input Low Voltage	V _{IL}	DE, DI, REB			0.8	V
Input Current	I _{IN1}	DI			±2.0	μΑ
Input Current	I _{IN2}	DE, REB			±50	μΑ
DI Input Hysteresis	V_{HYS}			100		mV
Input Current (A and B)	I _{IN3}	DE=GND, V _{CC} =GND or 5.25V			125 -75	μA μA
Transmitter Short-Circuit		-7V≤V _{OUT} ≤V _{CC}	-250			mA
Output Current	los	0V≤V _{OUT} ≤12V			250	mA
RECEIVER					•	
Receiver Differential Threshold Voltage	V_{TH}	V _{CM} =+2.5V	-200		-20	mV
Receiver Input Hysteresis	ΔV_{TH}			25		mV
Receiver Output High Voltage	V_{OH}	I _O =-4mA, V _{ID} =-20mV	V _{CC} -1.5			V
Receiver Output Low Voltage	V_{OL}	I _O =4mA, V _{ID} =-200mV			0.5	V
Three- State Output Current at Receiver	I _{OZR}	0.4V≤V _{CM} ≤2.4V			±1.0	μΑ
Receiver Input Resistance	R _{IN}	-7V≤V _{CM} ≤+12V	96			kΩ
Receiver Output Short-Circuit Current	I _{OSR}	Fig.6, 0V≤V _{RO} ≤VCC	±7		±95	mA
SUPPLY CURRENT						
	Icc	No Load, DE=V _{CC}		420	900	μA
Supply Current		REB=GND, DI=V _{CC} or GND. DE=GND		320	600	μΑ
Supply Current in Shutdown Mode	I _{SHDN}	REB=V _{CC} , DE=GND		1.0	10	μΑ

SWITCHING CHARACTERISTICS

 $(V_{CC}=5.0V \pm 5\%$ with $T_A=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $V_{CC}=5.0V$ and $T_A=25^{\circ}C$)

(VCC 0.0V ±070 WILLI TA TIVIII) L	r_{MAX} , and	33 otherwise noted. Typical values are at vec	0.0 1 0	IIIG I A	<u>-0 0, </u>	
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
Transmitter Input to Output	t_{DPLH}, t_{DPHL}	Fig.2 and 7, R _{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF		720	900	ns
Transmitter Output Skew	t _{DSKEW}	Fig.2 and 7, R_{DIFF} =54 Ω , C_{L1} = C_{L2} = 100pF		10		ns
Transmitter Rise or Fall Time	t_{DF}, t_{DR}	Fig.2 and 7, R _{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF		15	750	ns
Maximum Data Rate	f _{MAX}		500			Kbps
Transmitter Enable to Output Low	t _{DZL}	Fig.4 and 8, C _{DL} =100pF, S1 Closed			2500	ns
Transmitter Enable to Output High	t _{DZH}	Fig.4 and 8, C _{DL} =100pF, S2 Closed			2500	ns
Transmitter Disable Time from Low	t _{DLZ}	Fig.4 and 8, C _{DL} =15pF, S1 Closed			500	ns
Transmitter Disable Time from High	t _{DHZ}	Fig.4 and 8, C _{DL} =15pF, S2 Closed			500	ns
Receiver Input to Output	t _{RPLH} , t _{RPHL}	Fig.5 and 9 , $ V_{ID} \ge 2.0V$; Rise and Fall Time of $V_{ID} \le 15$ ns		200		ns
t _{RPLH} – t _{RPHL} Different Receiver Skew	t _{RSKD}	Fig.5 and 9 , $ V_{ID} \ge 2.0V$; Rise and Fall Time of $V_{ID} \le 15$ ns		100		ns
Receiver Enable to Output Low	t _{RZL}	Fig.3 and 10, C _{RL} =100pF, S1 Closed		50		ns
Receiver Enable to Output High	t _{RZH}	Fig.3 and 10, C _{RL} =100pF, S2 Closed		50		ns
Receiver Disable Time from Low	t _{RLZ}	Fig.3 and 10, C _{RL} =100pF, S1 Closed		50		ns
Receiver Disable Time from High	t _{RHZ}	Fig.3 and 10, C _{RL} =100pF, S2 Closed		50		ns
Time to Shutdown	t _{SHDN}			200		ns
Transmitter Enable from Shutdown to Output Low	t _{DZL(SHDN)}	Fig.4 and 8, C _{DL} =15pF, S1 Closed			4500	ns
Transmitter Enable from Shutdown to Output High	t _{DZH(SHDN)}	Fig.4 and 8, C _{DL} =15pF, S2 Closed			4500	ns
Receiver Enable from Shutdown to Output Low	t _{RZL(SHDN)}	Fig.3 and 10, C _{RL} =100pF, S1 Closed			4500	ns
Receiver Enable from Shutdown to Output High	t _{RZH(SHDN)}	Fig.3 and 10, C _{RL} =100pF, S2 Closed			4500	ns

■ FUNCTION TABLE

TRANSMITTING					
INPUTS			OUTPUTS		
REB	DE	DI	А	В	
X	1	0	0	1	
X	1	1	1	0	
0	0	X	High-Z	High-Z	
1	0	X	Shutdown		

RECEIVING				
INPUTS			OUTPUT	
REB	DE	A-B	RO	
0	X	≥ -0.02V	1	
0	X	≤ -0.2V	0	
0	X	Open/Shorted	1	
1	1	X	High-Z	
1	0	X	Shutdown	

X = Don't care

Shutdown mode, transmitter and receiver outputs high impedance

■ TEST CIRCUIT

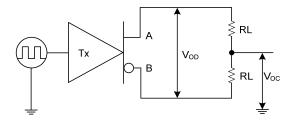


Fig. 1 Transmitter DC Test Circuit

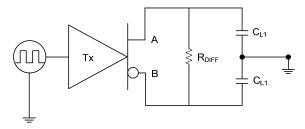


Fig. 2 Transmitter Timing Test Circuit

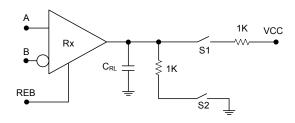


Fig. 3 Receiver Enable/Disable Timing Test Circuit

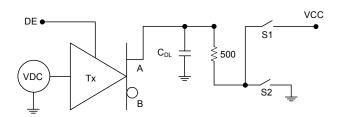


Fig. 4 Transmitter Enable/Disable Timing Test Circuit

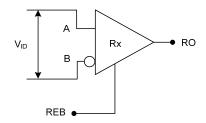


Fig. 5 Receiver Timing Test Circuit

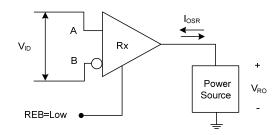


Fig. 6 Receiver Output Short Circuit

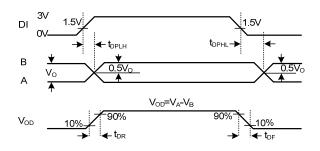


Fig. 7 Transmitter Propagation Delays

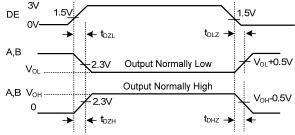
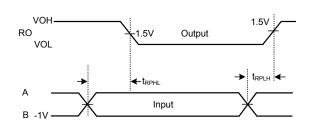



Fig. 8 Transmitter Enable and Disable Times

■ TEST CIRCUIT (Cont.)

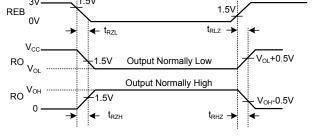


Fig. 9 Receiver Propagation Delays

Fig. 10 Receiver Enable and Disable Times

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.