SPECIFICATION

PART NO. : OEL9M1018-Y-E

3.08 inch OLED 20x2 characters with 6x8 dots

This specification maybe changed without any notice in order to improve performance or quality etc.

Please contact TRULY Semiconductors LTD. OLED R&D department for update specification and product status before design for this product or release the order.

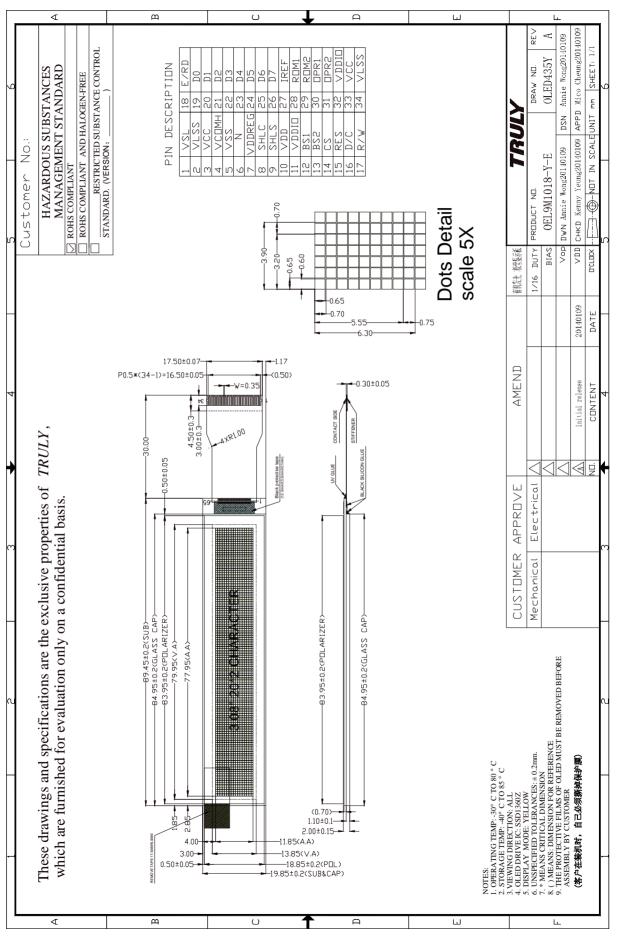
PRODUCT CONTENTS

n PHYSICAL DATA n ABSOLUTE MAXIMUM RATINGS n EXTERNAL DIMENSIONS n ELECTRICAL CHARACTERISTICS n TIMING OF POWER SUPPLY n ELECTRO-OPTICAL CHARACTERISTICS n INTERFACE PIN CONNECTIONS n COMMAND TABLE n CHARACTER GENERATION ROM n INITIALIZATION CODE n SCHEMATIC EXAMPLE n RELIABILITY TESTS n OUTGOING QUALITY CONTROL SPECIFICATION n CAUTIONS IN USING OLED MODULE

TRULY®信利		Customer	
Written by Mi Chaofeng		Арј	proved by
Checked by	Yang Xueyu		
Approved by	Zhang Weicang		

Rev.	Contents	Date
1.0	first release	2014-04-02

n PHYSICAL DATA


No.	Items:	Specification:	Unit
1	Diagonal Size	3.08	Inch
2	Resolution	20x2	characters
3	Active Area	77.95 (W) x 11.85(H)	mm ²
4	Outline Dimension (Panel)	89.45(W) x 19.85(H)	mm ²
5	Pixel Pitch	0.65(W) x 0.70(H)	mm ²
6	Pixel Size	0.60(W) x 0.65(H)	mm ²
7	Driver IC	SSD1360Z	-
8	Display Color	Yellow	-
8	Grayscale	1	Bit
9	Interface	Parallel / SPI / I2C	-
10	IC package type	COG	-
11	Thickness	2.0 ± 0.1	mm
12	Weight	TBD	g
13	Duty	1/16	-

n MAXIMUM RATINGS

Voltage Referenced to VSS

Symbol	Parameter	Value	Unit
V _{DDIO}		-0.3 to +6	V
V _{DD}	Supply Voltage	-0.3 to 3.6	V
Vcc		0 to 16	V
V _{SEG}	SEG output voltage	0 to V _{CC}	V
V _{COM}	COM output voltage	0 to 0.9*V _{CC}	V
Vin	Input voltage	V _{SS} -0.3 to V _{DD} +0.3	V
T _A	Operating Temperature	-40 to +85	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

n EXTERNAL DIMENSIONS

nELECTRICAL CHARACTERISTICS

•DC Characteristics

Condition(Unless otherwise specified)

Voltage reference to Vss, $V_{DDIO} = 2.4$ V to 3.6V, 4.4 V to 5.5 V

a		m , ~		1.2.65	-	(Ta = 2)	,
Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC}	Operating Voltage	-		8	-	15	V
V _{DDIO}	Low voltage power supply, power supply for I/O pins	Low Voltage I/O	O Application	2.4	-	3.6	v
		5V I/O Applicat	tion (V_{DD} as output)	4.4	-	5.5	V
V _{OH}	High Logic Output Level	$I_{OUT} = 100 uA, 3$.3MHz	0.9x V _{DDIO}	-	-	v
V _{OL}	Low Logic Output Level	$I_{OUT} = 100 uA, 3$.3MHz	-	-	0.1x V _{DDIO}	v
V _{IH}	High Logic Input Level	-		0.8x V _{DDIO}	-	-	v
V _{IL}	Low Logic Input Level	-		-	-	0.2x V _{DDIO}	v
I _{SLP_VDD}	V_{DD} Sleep mode Current	$V_{DDIO} = 3.3V, V$ V_{DD} (external: L 3.3V, Display OFF, N		-	-	10	uA
		$V_{DDIO} = 3.3V,$ $V_{CC} = OFF$ Display OFF, No panel attached	Ext $V_{DD} = 3.3V$	-	-	10	uA
I _{SLP VDDIO}	V _{DDIO} Sleep mode Current	$V_{DDIO} = 5V,$ $V_{CC} = OFF$	Enable Internal V _{DD} during Sleep mode (at 5V I/O mode)	-	55	70	uA
		Display OFF, No panel attached	Disable Internal V_{DD} during Sleep mode (Deep Sleep mode)	-	-	10	uA
I _{SLP_VCC}	V _{CC} Sleep mode Current	$V_{CC} = 8 \sim 15 V$ $V_{DDIO} = 3.3 V, V$ $3.3 V,$ or $V_{DDIO} = 5 V, V_{DI}$ Display OFF, N		-	-	10	uA
I _{CC}	V_{CC} Supply Current $V_{DDIO} = VDD = 3.3V, VC$ $I_{REF} = 15uA, No loading, D$	CC =12V, Contrast = FFh,		-	1000	1200	uA
	V_{DDIO} Supply Current $V_{CC} = 12V$, Contrast = FFh,	$V_{DDIO} = V_{DD} = 3$ (Low Voltage I/	3.3V	-	0.5	5	uA
I _{ddio}	$I_{REF} = 15uA$, No loading, Display ON, All ON, ICON ON	V _{DDIO} = 5V (Inte (5V I/O Applica		-	240	290	uA

TRULY SEMICONDUCTORS LTD.

TRULY[®]信利 TRULY SEMICONDUCTORS LTD.

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
I _{DD}		oltage I/O Application), splay ON, All ON, ICON ON	-	200	240	uA
	Segment Output Current, V _{DDIO} = V _{DD} =3.3V (LV I/O)	Contrast=FFh	4	600	1.00	
I _{SEG}	or $V_{DDIO} = 5V (5V I/O),$	Contrast=7Fh	* *	300		uA
	$V_{CC} = 12V$, $I_{REF} = 15uA$, Display ON	Contrast=3Fh	-	150	120	
Dev	Segment output current uniformity	$\begin{array}{l} \text{Dev} = (I_{\text{SEG}} - I_{\text{MID}})/I_{\text{MID}}\\ I_{\text{MID}} = (I_{\text{MAX}} + I_{\text{MIN}})/2\\ I_{\text{SEG}}[0:99] = \text{Segment current}\\ \text{at contrast setting} = \text{FFh} \end{array}$	-3	25	3	%
Adj. Dev	Adjacent pin output current uniformity (contrast setting = FFh)	= $Adj Dev = (I[n]-I[n+1]) / (I[n]+I[n+1])$	-2		2	%
Icon _{SEG}	Icon Segment Output Curren V _{DDIO} = V _{DD} =3.3V (LV I/O) or			600	3 	uA
	$V_{DDIO} = 5V (5V I/O),$ $V_{CC} = 12V, I_{REF} = 15uA,$ Display ON	Contrast=3Fh	-	300		

♦ AC Characteristics

Conditions:

Voltage referenced to Vss

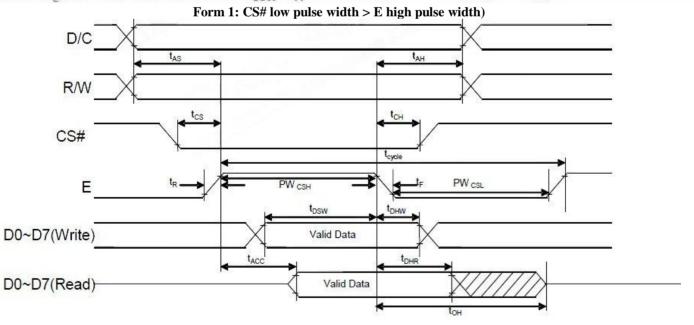
 V_{DDIO} = 2.4 to 3.6V (Low Voltage I/O Application) or V_{DDIO} = 4.4V to 5.5V (5V I/O Application) T_A = 25°C

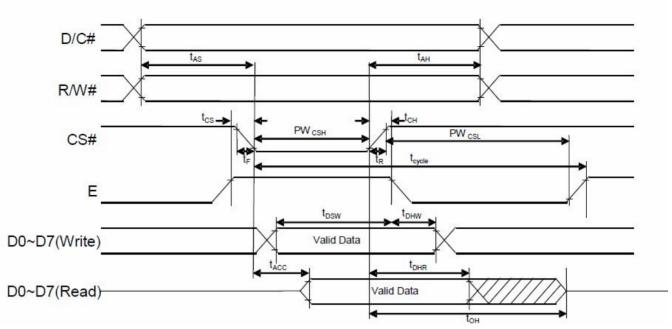
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
POSC ···	Oscillation Frequency of Display Timing Generator	V_{DD} = 3.3 V or Internal V_{DD}	268	298	328	kHz
FERM	Frame Frequency for 16 MUX Mode	2-line Character Display Mode, Display ON, Internal Oscillator Enabled		Fosc * 1 / (D * K * 16) ⁽²⁾	-	Hz
t _{RES}	Reset low pulse width (RES#)	-	2000		2	ns

Note

(1) Fose stands for the frequency value of the internal oscillator and the value is measured when OLED command D5h A[7:4] is in default value.

(2) D: Divide ratio

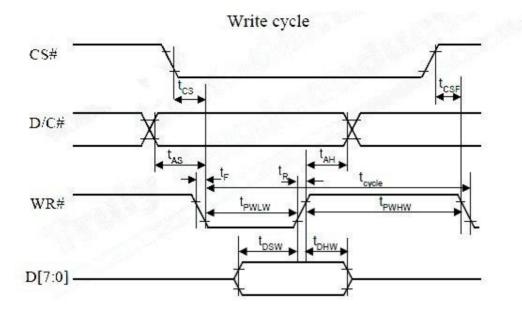

K: Phase 1 period + Phase 2 period + K_o , where $K_o = 170$ Default K is 8 + 4 + 170 = 182


Use 8080/6800-Series MPU Parallel Interface or Serial Interface 1. 6800 Series MPU Parallel Interface

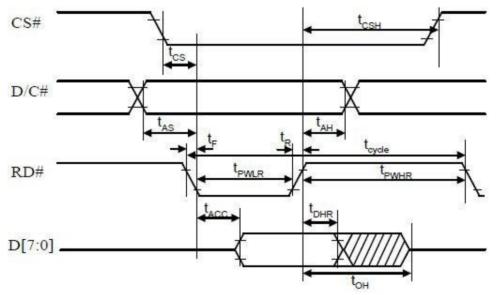
 $(TA = 25 \ ^{\circ}C \ , V_{DDIO} = 2.4-3.6 \ / \ 4.4-5.5V, V_{SS} = 0V)$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	400		•	ns
t _{AS}	Address Setup Time	13	18	•	118
t _{AE}	Address Hold Time	17	-		ns
t _{cs}	Chip Select Time	0	-	•	ns
t _{CH}	Chip Select Hold Time	0			ns
t _{DSW}	Write Data Setup Time	35		-	115
t _{DHW}	Write Data Hold Time	18	1 (A)		ns
t _{DHR}	Read Data Hold Time	13	12	×	115
toH	Output Disable Time		17	90	ns
t _{ACC}	Access Time (RAM) Access Time (command)			200	ns 115
PW _{CSL}	Chip Select Low Pulse Width (read RAM)	250			ns
	Chip Select Low Pulse Width (read Command) Chip Select Low Pulse Width (write)	250 50	÷	:	ns ns
PW _{CSH}	Chip Select High Pulse Width (read) Chip Select High Pulse Width (write)	155 150	:	:	ns ns
t _R	Rise Time			15	ns
t _F	Fall Time	•		15	115

Note (1) All timings are based on 20% to 80% of V_{DDIO}-V_{SS}


Form 2: CS# low pulse width < E high pulse width)

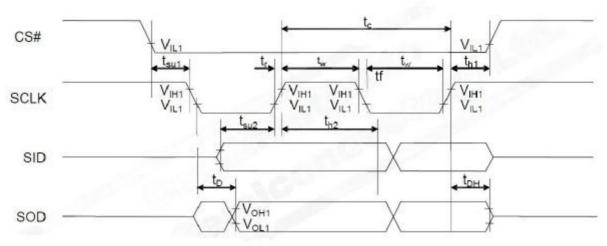
2. 8080 Series MPU Parallel Interface


8080-Series MCU Parallel Interface Timing Characteristics

(TA = 25°C, VDDIO = 2.4-3.6 / 4.4-5.5V, VSS = 0V)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time (write cycle)	400			ns
t _{AS}	Address Setup Time	13			ns
t _{AH}	Address Hold Time	17			ns
t _{CS}	Chip Select Time	0	-	1920	118
t _{CSH}	Chip select hold time to read signal	0		-	ns
t _{CSF}	Chip select hold time	0	-		ns
t _{DSW}	Write Data Setup Time	35	•		118
tDHW	Write Data Hold Time	18	-	124	ns
t _{DHR}	Read Data Hold Time	13	-	1/21	ns
ton	Output Disable Time			70	ns
t _{ACC}	Access Time (RAM) Access Time (command)	~	•	200	ns ns
PWCSL	Chip Select Low Pulse Width (read RAM) - tpwLR	250	•		118
	Chip Select Low Pulse Width (read Command) - tpwLR	250			ns
	Chip Select Low Pulse Width (write) - tpWLW	50			ns
PWCSH	Chip Select High Pulse Width (read) - tpWHR	155		•	ns
	Chip Select High Pulse Width (write) - tpWHW	150			118
t _R	Rise Time			15	ns
t _F	Fall Time		•	15	ns

Read Cycle

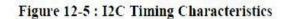

3. Serial Interface

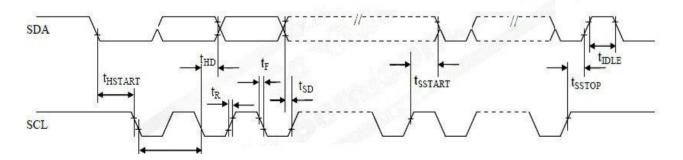
Serial Timing Characteristics

(T_A = 25°C, V_{DDIO} = 2.4-3.6 / 4.4-5.5V, V_{SS} =0V)

Symbol	Parameter	Min	Тур	Max	Unit
tc	Serial clock cycle time	1		20	us
t _p , t _f	Serial clock rise/fall time		- 120	15	ns
tw	Serial clock width (high, low)	400	858	•	ns
t _{sul}	Chip select setup time	60		-	ns
thi	Chip select hold time	20			ns
t _{su2}	Serial input data setup time	200	348	•	ns
t _{h2}	Serial input data hold time	20	1941	-	ns
tD	Serial output data delay time	200	14		ns
t _{DH}	Serial output data hold time	10		-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS


Serial Timing Characteristics


4. I²C Timing Characteristics I2C Timing Characteristics

$(T_{A} = 25^{\circ}C)$	$V_{\text{DDIO}} = 2.4-3.6 / 4.4-5.5 \text{V}, \text{V}_{\text{SS}} = 0 \text{V})$	
Symbol	Parameter	

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5		-	us
t _{hstart}	Start condition Hold Time	0.6	1.4	140	us
t _{HD}	Data Hold Time (for "SDA _{OUT} " pin)	5	W29	- - - - - - 300	ns
	Data Hold Time (for "SDA _{IN} " pin)	460	1559	1563	ns
t _{SD}	Data Setup Time	100		(=3)	ns
t _{sstart}	Start condition Setup Time (Only relevant for a repeated Start condition)	0.6	12	141	us
t _{sstop}	Stop condition Setup Time	0.6		-2	us
t _R	Rise Time for data and clock pin		- 4	300	ns
t _F	Fall Time for data and clock pin	a second	-	300	ns
t _{IDLE}	Idle Time before a new transmission can start	1.3		1043	us
			-		*

Note: All timings are based on 20% to 80% of VDDIO-VSS

n TIMING OF POWER SUPPLY

The following figures illustrate the recommended power ON and power OFF sequence of SSD1360 :

When LV I/O mode is chosen:

Power ON sequence:

- 1. Power ON VDDIO, VDD
- After V_{DDIO}, V_{DD} become stable, wait at least 20ms (t₀), set RES# pin LOW (logic low) for at least 3us (t₁)⁽⁴⁾ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 3us (t2). Then Power ON Vcc.⁽¹⁾
- After V_{CC} become stable, send fundamental command 0Ch (for RE=0b, SD=0b) for display ON. SEG/COM will be ON after 100ms (t_{AF}).

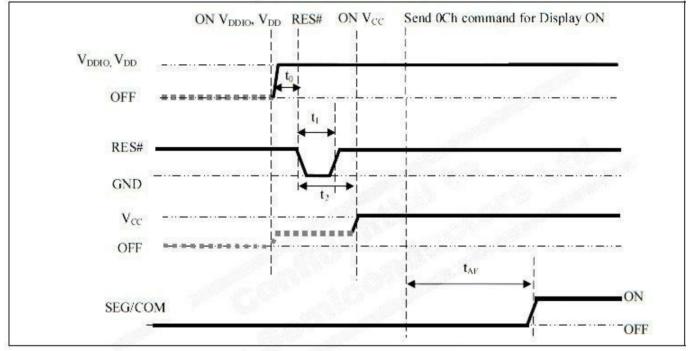
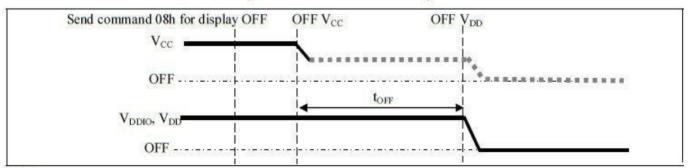



Figure 7-14 : The Power ON sequence

Power OFF sequence:

- 1. Send fundamental command 08h (for RE=0b, SD=0b) for display OFF.
- 2. Power OFF V_{CC}^{(1), (2), (3)}
- 3. Power OFF V_{DDIO}, V_{DD} after t_{OFF}. (where Minimum t_{OFF}=0ms⁽⁵⁾, Typical t_{OFF}=100ms)

Figure 7-15 : The Power OFF sequence

Note:

⁽¹⁾ Since an ESD protection circuit is connected between V_{DDIO}, V_{DD} and V_{CC}, V_{CC} becomes lower than V_{DDIO}, V_{DD} whenever V_{DDIO}, V_{DD} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure 7-14 and Figure 7-15.

- ⁽²⁾ V_{CC} should be kept float (i.e. disable) when it is OFF.
- ⁽³⁾ Power Pins (V_{DDIO}, V_{DD}, V_{CC}) can never be pulled to ground under any circumstance.

⁽⁴⁾ The register values are reset after t₁.

⁽⁵⁾ V_{DDIO}, V_{DD} should not be Power OFF before V_{CC} Power OFF.

TI ELECTRO-OI	IICAL					<i>'</i>)	
Items		Symbol	Min.	Тур.	Max.	Unit	Remark
Operating Lum	inance	L	120	150*	-	cd /m ²	Yellow
Power Consun	nption	Р	-	105	120	mW	30% pixels ON L=150cd/m ²
Frame Freque	ency	Fr	-	100	-	Hz	-
Color Coordinate	Yellow	CIE x CIE y	0.42	0.46	0.50 0.55	CIE1931	Darkroom
Desmanas Time	Rise	Tr	-	-	0.02	ms	-
Response Time	Decay	Td	-	-	0.02	ms	-
Contrast Ra	tio*	Cr	10000:1	-	-	-	Darkroom
Viewing An	gle	θ	160	-	-	Degree	-
Operating Life	Time*	Тор	40,000	-	-	Hours	L=150cd/m ²

n ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Note:

1. **150cd/m²** is base on V_{DD} =3.0V, V_{CC} =12.0V, contrast command setting 0x5F;

2. Contrast ratio is defined as follows:

Contrast ratio = $\frac{\text{Photo} - \text{detector output with OLED being "white"}}{\frac{1}{2}}$

Photo – detector output with OLED being "black"

3. Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternately displayed)

(The initial value should be closed to the typical value after adjusting.)

n INTERFACE PIN CONNECTIONS

No	Symbol	Description
1	VSL	This is segment voltage (output low level) reference pin. When external VSL is not used, this pin should be left
2	VLSS	Analog system ground pin. It must be connected to external ground.
3	VCC	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. It is supplied by external high voltage source.
4	VCOMH	 COM signal deselected voltage level. A capacitor should be connected between this pin and VSS. No external power supply is allowed to connect to this
5	VSS	Ground pin. It must be connected to external ground.
6	Ν	Select number of display line during power ON reset When this pin is pulled HIGH, 2-line is selected as display line .When this pin is pulled LOW, 1-line is selected as display line.
7	VDDREG	 Internal VDD regulator selection pin in 5V I/O application mode. When this pin is pulled HIGH, internal VDD regulator is enabled (5V I/O application). When this pin is pulled LOW, internal VDD regulator is disabled (Low voltage I/O application). Under 5V I/O application mode, internal VDD regulator can also be disabled by extended command 71h "Function Selection A" for power saving;.
8	SHLC	SHLC COM scan direction 1 COM0 to COM16 (Normal) 0 COM16 to COM0 (Reverse)
9	SHLS	This pin is used to change the mapping between the display data column address and the Segment driver.SHLSSEG direction1SEG0 to SEG119 (Normal)0SEG119 to SEG0 (Reverse)

10	VDD	 Power supply for core logic operation. VDD can be supplied externally or regulated internally. In LV IO application (internal VDD is disabled), this is a power input pin. In 5V IO application (internal VDD is enabled), VDD is regulated internally from VDDIO. A capacitor should be connected between VDD and VSS under all circumstances.
11	VDDIO	Low voltage power supply and power supply for interface logic level in both Low Voltage I/O and 5V I/O application. It should match with the MCU interface voltage level and must be connected to external source.
12	BS1	
13	BS2	— MCU bus interface selection pins.
14	CS#	This pin is the chip select input connecting to the MCU.The chip is enabled for MCU communication only when CS# is pulled LOW (active LOW).In I2C mode, this pin must be connected to VSS.
15	RES#	This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed.
16	D/C#	 This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data at D[7:0] will be interpreted as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to a command register. In I2C mode, this pin acts as SA0 for slave address selection.
17	R/W#	 This pin is read / write control input pin connecting to the MCU interface. When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I2C interface is selected, this pin must be connected to VSS.

18	E/RD#	This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial or I2C interface is selected, this pin must be connected to VSS.
19~26	D0~D7	These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SID and D2 will be the serial data output: SOD. When I2C mode is selected, D2, D1 should be tied together and serve as SDA out , SDA in application and D0 is the serial clock input, SCL.
27	IREF	This pin is the segment output current reference pin. IREF is supplied externally. A resistor should be connected between this pin and VSS to maintain current of around 15uA .
28~29	ROM1~ROM2	These pins are used to select Character ROM; select appropriate logic setting as described in the following table. ROM1 and ROM0 are pin select as shown in below table: $\frac{ROM1 ROM0 ROM}{0 0 A} \\ \hline 0 1 B} \\ \hline 1 0 C \\ \hline 1 1 S/W \text{ selectable}}$ S/W selectable by extended command 72h "Function Selection B";
30~31	OPR1~ OPR2	This pin is used to select the character number of character generator.OPR1OPR0CGROMCGRAM112560012488102506002408
32	VDDIO	Same as pin 11

33	VCC	Same as pin 3.
34	VLSS	Same as pin 2.

MCU Bus Interface Pin Selection

Pin name	8080-	6800-	Serial	I2C
	parallel(8bit)	parallel(8bit)	Interface	Interface
BS1	1	0	0	1
BS2	1	1	0	0

Note: 0 is connected to Vss

1 is connected to VDD.

n COMMAND TABLE

1. Fundam	enta	I CO	mman	d 1 ab	lese				Cada				1
Command	RE	SD	D/C#	R/W#	D7	D6	lnstru D5	D4	D3	D2	D1	D0	Description
Clear Display	x	0	0	(WR#) 0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC.
Return Home	0	0	0	0	0	0	0	0	0	0	1	*	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry Mode Set	0	0	0	0	0	0	0	0	0		I/D	s	Assign cursor / blink moving direction with DDRAM address. I/D = "1": cursor/ blink moves to right and DDRAM address is increased by 1 (POR) I/D = "0": cursor/ blink moves to left and DDRAM address is decreased by 1 Assign display shift with DDRAM address. S = "1": make display shift of the enabled lines by the DS2 to DS1 bits in the shift enable instruction. Left/ right direction depends on I/D bit selection. S = "0": display shift disable (POR)
	1	0	0	0	0	0	0	0	0	1	BDC	BDS	Common bi-direction function. BDC = "0": COM16 -> COM0 BDC = "1": COM0 -> COM16 Segment bi-direction function. BDS = "0": SEG119 -> SEG0, BDS = "1": SEG0 -> SEG119
Display ON / OFFControl	0	0	0	0	0	0	0	0	1	D	с	в	Set display/cursor/blink ON/OFF D = "1": display ON, D = "0": display OFF (POR), C = "1": cursor ON, C = "0": cursor OFF (POR), B = "1": blink ON, B = "0": blink OFF (POR). Note: It is recommended to turn off the cursor and blinking effects when updating internal RAM contents for better visual performance; refer to Section 9.1.4 for details

TRULY[®]信利 TRULY <u>SEMICONDUCTORS LTD.</u>

1. Fundame	ental	Co	mman	d Tab	leSe	t			12-1		-		
Command	RE	SD		DAVA		23	Instru	ction (Code	8		1	Description
command	RL.	30	D/C#	R/W# (WR#)	D7	D6	D5	D4	D3	D2	D1	D0	Description
Function Set	0	0	0	0	0	0	1	DL	N	RE (0)	BRI	BRO	Parallel bus width, DL when DL = "1" (POR): 8-bit, when DL = "0": 4-bit Numbers of display line, N when N = "1" (POR): 2-line, when N = "0": 1-line Extension register, RE ("0") Brightness ratio, BR[1:0] (% setting of different contrast level) 00: 100%, 01: 75%, 10: 50%, 11: 25%
	1	0	0	0	0	0	ï	ות.	x	RE (1)	BE	REV	Extension register, RE ("1") CGRAM blink enable BE = 1b: CGRAM blink enable BE = 0b: CGRAM blink disable (POR) Reverse bit REV = "1": reverse display, REV = "0": normal display (POR)
Set CGR AM address	0	0	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter. (POR=00 0000)
Set DDRAM Address	0	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter. (POR=000 0000)
Set Scroll Quantity	1	0	0	0	1	*	SQ5	SQ4	SQ3	SQ2	SQ1	SQ0	Set the quantity of horizontal dot scroll. (POR=00 0000) Valid up to SQ[5:0] = 110000b
Read Busy Flag and Address/ Part ID	x	0	0	1	BF	AC6 / ID6	AC5 / ID5	AC4 / ID4	AC3 / ID3	AC2 / ID2	AC1 / ID1	AC0 / ID0	Can be known whether during internal operation or not by reading BF. The contents of address counter or the part ID can also be read. When it is read the first time, the address counter can be read. When it is read the second time, the part ID can be read. BF = "1": busy state BF = "0": ready state
Write data	x	0	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM / CGRAM).
Read data	x	0	1	1	D7	D6	D5	D4	D3	D2	DI	D0	Read data from internal RAM (DDRAM / CGRAM).

*Notes (1) POR stands for Power On Reset Values.POR stands for Power On Reset Values.

(2) "*" and "X" stand for "Don't care".

TRULY[®]信利 TRULY <u>SEMICONDUCTORS LTD.</u>

Rev : 1.0 April.02, 2014

Command	RE	SD				Inst	ruct	ion (Code					Description
			D/C#	R/W# (WR#)	Hex	D 7	D6	D5	D4	D3	D2	D1	D0	
	1	0	0	0	71	0	1	1	1	0	0	0	1	$A[7:0] = 00h$, Disable internal V_{DD} regulated
	1	0	1	0	A[7:0]	A ₇	A ₆	As	A4	A ₃	A ₂	A	A	at 5V I/O application mode
Function Selection A														A[7:0] = 5Ch, Enable internal V_{DD} regulate 5V I/O application mode (POR)
1	1	0	0	0	72	0	1	1	1	0	0	1	0	OP[1:0]: Select the character no. of charact
	1	0	1	0	1009290	*	*	*	*	RO1	RO0	OP1		generator
6														OP[1:0] CGROM CGRAM
														00b 240 8
														01b 248 8
														10b 250 6
														11b 256 0
										3.5	53			RO[1:0] ROM 00b A 01b B 10b C
									175	68.1	1			l1b Invalid
														Note: It is recommended to turn off the dis (cmd 08h) before setting no. of CGRAM ar defining character ROM, while clear displa (cmd 01h) is recommended to sent afterwar
	1	X	0	0	78 / 79	0	1	1	1	1	0	0	SD	Extension register, SD
OLED Characterization														SD = 0b: OLED command set is disabled (POR) SD = 1b: OLED command set is enabled Details refer to Table 8-3, Table and Table

Notes ⁽¹⁾ POR stands for Power On Reset Values. ⁽²⁾ "*" and "X" stand for "Don't care".

Command	RE	SD				Ir	istru	ction	Code				-	1	Description
			D/C#	R/W# (WR#)	Hex	D7	D6	D5	D4	D3	D2	D1	D0		
Set Contrast Control	1	1	0	0 0	81 A[7:0]	1 A ₇	0 A ₆	0 A5	0 A4	0 A3	0 A ₂	0 A1	1 A ₀		
Set Display Clock Divide Ratio/Oscillator Frequency	1	1	0	00	D5 [A[7:0]	1 A7	1 A ₆	0 As	1 A4	0 A ₁	1 A ₂	0 A1	1 A ₀	the disp Divide RESET 1) A[7:4]: Set the Fose- inerea A[7:4 RESE Range Freque	the divide ratio (D) of olay clocks (DCLK): ratio= A[3:0] + 1, is 0000b (divide ratio = Oscillator Frequency, Oscillator Frequency ases with the value of and vice versa. T is 0100b 5000b-1111b ney increases as setting nercases.
Set Pre-charge Period	1 1	1	0	0 0	D9 [A[7:0]	1 A7	1 A6	0 A1	I A₄	1 Aj	0 A ₂	0 A1	1 A ₀	DCLK (RESE A[7:4] : Phase :	2 period of up to 15 clocks 0 is invalid entry
Set COM Pins Hardware Configuration	1	1	0	0 0	DA [A[7:0]	1	1	0 As	1 A4	1	0	1	0	configuration A[5]=0b(RESE Left/Right rema	T), Alternative SEG pin T), Disable SEG
Set V _{сомн} Deselect Level	1	1	0	0 0	DB A[7:0]	1 0	1 0	0 A5	1 A4	1 0	0 0	1 0	1 0	A[5:4] Hex code 00b 00h 10b 20h 11b 30h	$V_{\text{COMH}} \text{ deselect level}$ $\sim 0.65 \text{ x } V_{\text{CC}}$ $\sim 0.77 \text{ x } V_{\text{CC}}$ (RESET) $\sim 0.83 \text{ x } V_{\text{CC}}$

TRULY[®]信利 TRULY SEMICON<u>DUCTORS LTD.</u>

Command	RE	SD			<i></i>	h	istru	iction	Code		NC	157	441	Description
Ceser testingent	11.000		D/C#	R/W# (WR#)	Hex	D7	D6	D5	D4	D3	D2	D1	D0	
	1	1	0	0	DC	1	1	0	1	1	1	0	0	Set GPIO:
GPIO Function	1	1	0	0	A[7:0]	0	0	0	0	0	0	Α ₁	Ao	 A[1:0] = 00b represents GPIO pin HiZ, input disabled (always read as low) A[1:0] = 01b represents GPIO pin HiZ, input enabled A[1:0] = 10b represents GPIO pin output Low (RESET) A[1:0] = 11b represents GPIO pin output High
	1	1	0	0	F2	1	1	1	1	0	0	1	0	A[1] = 0b: Enable external VSL A[1] = 1b: Internal VSL (RESET)
VSL Setting	1		0	0	A[1]		0	0	0	0	0	Λ ₁	0	Note a) Refer to Table 6-1 for VSL pin details

Note ⁽¹⁾ POR stands for Power On Reset Values. ⁽²⁾ "*" and "X" stand for "Don't care". ⁽³⁾ The locked OLED driver IC MCU interface prohibits all commands access except logic bit SD is set to 1b. ⁽⁴⁾ Refer to Table 8-1 and Table 8-2 and for the details of logic bits RE and SD.

4. Graphic Con Command	RE					Description								
			D/C#	R/W# (WR#)	Hex	D7	D6	ction D5	D4	D3	D2	D1	D0	
Character Mode or Graphic Mode Selection	1	1	0	0	F0 A[7:0]	1	1	1	1	0 *	0 *	0	0 A ₀	A[0]=0b, Graphic mode A[0]=1b (RESET), Character mode
Set Lower Column Start Address for Page Addressing Mode	1	1	0	0	00~0F	0	0	0	0	X ₁	X ₂	X1	Xo	Set the lower nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET. Note ⁽¹⁾ This command is only for page addressing mode
Set Higher Column Start Address for Page Addressing Mode	1	1	0	0	10~17	0	0	0	1	0	X ₂	Xı	Xo	Set the higher nibble of the column star address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET. Note ⁽¹⁾ This command is only for page addressing mode
Set Memory Addressing Mode	1	1	0	0 0	20 A[7:0]	0*	0*	1	0 *	0 *	0*	0 A1	0 A ₀	A[1:0] = 00b, Horizontal Addressing Mode A[1:0] = 01b, Vertical Addressing Mode A[1:0] = 10b, Page Addressing Mode (RESET) A[1:0] = 11b, Invalid
Set Column Address	1 1 1	1	0	0 0 0	21 A[7:0] B[7:0]	0 *	0 A ₆ B ₆	1 As B;	0 A ₄ B ₄	0 A ₃ B ₃	0 A ₂ B ₂	0 A ₁ B ₁	1 A ₀ B ₀	Setup column start and end address A[6:0] : Column start address, range : 0-119d, (RESET=0d) B[6:0]: Column end address, range : 0- 119d, (RESET =119d) Note ⁶¹ This command is only for horizontal or vertical addressing mode.
Set Page Address	1 1 1	111	0 0 0	0 0 0	22 [A[7:0] [B[7:0]	0 *	0 *	1 *	0*	0*	0*	*	0 A ₀ B ₀	Setup page start and end address A[2:0] : Page start Address, range : 0- 1d, (RESET = 0d) B[2:0] : Page end Address, range : 0-1d (RESET = 1d) Note ⁽¹⁾ This command is only for horizontal or vertical addressing mode.

. Graphic Cor Command	RE					Ir	stru	ction	Code					Description
Command	I.L.	[D/C#	R/W#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	
Set Display Start Line	1	1	0	(WR#) 0	40~4F	0	1	0	0	X ₃	X ₂	X1	X ₀	Set display RAM display start line register from 0-15 using $X_3X_2X_1X_0$. Display start line register is reset to 0000b during RESET. Note ⁽¹⁾ The scroll offset value should be less tha the vertical scroll area set by OLED command A 3h.
Set Vertical Scroll Area	1 1 1	1 1 1	000	0000	A3 A[7:0] B[7:0]	1	0 * *		0 * B4	0 A3 B3	0 A ₂ B ₂	1 A ₁ B ₁	1 A ₀ B ₀	A[3:0] : Set No. of rows in top fixed area. The No. of rows in top fixed area is referenced to the top of the GDDRAM (i.e. row 0).[RESET = 0] B[4:0] : Set No. of rows in scroll area. This is the number of rows to be used for vertical scrolling. The scroll area starts in the firs row below the top fixed area. [RESET = 16] Note ⁽¹¹ A[3:0]+B[4:0] <= MUX ratio
Entire Display ON	1	1	0	0 0	A4/A5 A[7:0]		0	1	0	0 A3	1 A ₂	0 A1	X ₀ A ₀	A[3:0] + B[4:0] = 16 : bottom area scroll A4h, X0=0b: Resume to RAM content display (RESET) Output follows RAM content A5h, X0=1b: Entire display ON Output ignores RAM content
Set Page Start Address for Page Addressing Mode	1	1	0	0	B0B1	1	0		1	0	0	0	X ₀	Set GDDRAM Page Start Address (PAGE0~PAGE1) for Page Addressing Mode using X[0]. Note ⁽¹⁾ This command is only for page addressing mode
Set Display Offset	1	1	0 0	0 0	D3 A[7:0]	1	1	0	1 *	0 A3	0 A2	1 A1	1 A ₀	Set vertical shift by COM from 0d~150 The value is reset to 0000b after RESET.

Graphic Con Command	RE			Instruction Code										Description		
Command		[D/C#	R/W# (WR#)	Hex	D7	D6	D5	D4	D3	D2	DI	D0	14 KERE		
0	1	1	0	0	26/27	0	0	1	0	0	1	1	X ₀	26h, X[0]=0, Right Horizontal Scroll		
	1	1	0	0	A[7:0]	0	0	0	0	0	0	0	0	27h, X[0]=1, Left Horizontal Scroll		
	1	1	0	0	B[7:0]	*	*	*					Bo	(Horizontal scroll by 1 column)		
	1	1	0	0	C[7:0]	*	*	*	*		C ₂	C_1	Co			
	1	1	0	0	D[7:0]		*	*			*	*	D ₀	A[7:0] : Dummy byte (Set as 00h)		
	1	1	0	0	E[7:0]	0	0	0	0	0	0	0	0	B[0] : Define start page address		
	1	1	0	0	F[7:0]	*	F ₆	F,	F4	E ₁	\mathbb{F}_2	\mathbf{F}_1	Fo	0b - PAGE01b - PAGE1		
	1	1	0	0	G[7:0]	٠	Ge	Gs	G ₄	G ₁	G ₂	G	Go			
													e tr	C[2:0] : Set time interval between eac scroll step in terms of frame frequency 000b - 6 frames 100b - 3 frames 001b - 32 frames 101b - 4 frames		
														010b - 64 frames 110b - 5 frame:		
														011b - 111b - 2frame: 128 frames		
Continuous Horizontal Seroll Setup														D[0] : Define end page address [0b - PAGE0] 1b - PAGE1] The value of D[0] must be larger or equal to B[0] E[7:0] : Dummy byte (Set as 00h) F[6:0] : Define start column address (00d-119d) G[6:0] : Define end column address (00d-119d) The value of G[6:0] must be larger or equal to F[6:0]		
-					20121	~		<u></u>			0					
Continuous Vertical and	1	1	1 20 3	0	29/2A	. 0	0	1	0	1	0	X1 *	Xo			
Horizontal	1	11	4 20 24	0	A[7:0] B[7:0]								A ₀ B ₀			
Scroll Setup	1	1	N 33 5	0	C[7:0]	*	*	*	*		C ₂	C ₁	C_0	Horizontal Scroll		
	1	1	-	0	D[7:0]		*	8	*	8	*	*	-			
	- C.	1	- 33	- 1982 - 1		*	*	8					D ₀	A[0]: Horizontal scrolling offset		
	1	1		0	E[7:0]		335		*	E ₃	E ₂	E ₁	E ₀	A[0] = 0, no offset		
	1	1	0	0	F[7:0]	*	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀	A[0] = 1, scroll by 1 column		
	1	1	0	0	G[7:0]	*	G_6	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			

Command	RE	SD				h	stru	ction	Code					Description
			D/C#	R/W# (WR#)	Hex	D7	D6	D5	D4	D3	D2	DI	D0	
Content Scroll Setup	1 1 1	1 1 1	0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		by one column 2Dh, X[0]=1, Left Horizontal Scroll by								
	1	1	0	0	C[7:0]	0	0	0	0	0	0	0	1	one column
	1	1	0	0	D[7:0]	*	٠	*	*		*	•	Do	A[7:0] : Dummy byte (Set as 00h)
	1	1	0	0	E[7:0]	0	0	0	0	0	0	0	0	-B[0] : Define start page address
	1	1	0	0	F[7:0]	*	F_6	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀	0b - PAGE0 1b - PAGE1
	1	1	0	0	G[7:0]		G ₆	G ₅	G ₄	G ₃	G ₂	G1	Go	

n CHARACTER GENERATION ROM **ROM A**

63-0	0000	0001	0010	0011	0 100	0101	0110	0111	1000	1001	1010	1011	1 100	1 101	1110	1111
0000																
0001																
00 10																
0011																
0100																
0101																
01 10																
0111																
1000																
1001																
1010																
1011																
1100																
1101																
11 10																
1111																

ROM B

b7-4	0000	0001	0010	0011	0.100	0101	0110	0111	1000	1001	1010	1011	1100	1 101	1 110	_ 1111 _
00.00																
0001																
00 10																
0011																
0100																
0101																
01 10																
01.11																
10.00																
1001																
10 10																
10 11																
1100																
1101																
11 10																
11.11																

ROM C

b3+0	0000	0001	0010	0011	0 100	0101	0110	0111	1000	1001	1010	1011	1 100	1 101	1 110	1111
0000																
0001																
00 10																
0011																
0100																
0101																
01 10																
0111																
1000																
1001																
10 10																
1011																
1100																
1101																
11 10																
1111																

n INITIALIZATION CODE

void InitOLED_MASTER_SSD1360(void)

MainOLED_WCom(0x38);

ł

//display off,blink off ,cursor off MainOLED_WCom(0X08);

MainOLED_WCom(0x3C);//3CH:RE=1,38H:RE=0 //Entry Mode Set MainOLED_WCom(0x05);

//OLED command set is enabled MainOLED_WCom(0x79);

//Set Contrast Control
MainOLED_WCom(0x81);
MainOLED_WCom(CONTRAST);

//Set Display Clock Divide Ratio/Oscillator Frequency MainOLED_WCom(0xD5); MainOLED_WCom(0x40);

//Set Pre-charge Period MainOLED_WCom(0xD9); MainOLED_WCom(0x48);

//Set SEG Pins Hardware Configuration MainOLED_WCom(0xDA); MainOLED_WCom(0x12);

//Set VCOMH
MainOLED_WCom(0xDB);
MainOLED_WCom(0x20);

//GPIO Function
MainOLED_WCom(0xDC);
MainOLED_WCom(0x00);

//VSL Setting
MainOLED_WCom(0xF2);
MainOLED_WCom(0x02);

//Character Mode or Graphic Mode Selection(0b Graphic mode;1b Character mode)
TRULY SEMICONDUCTORS LTD.
P.

MainOLED_WCom(0xF0); MainOLED_WCom(0x00);

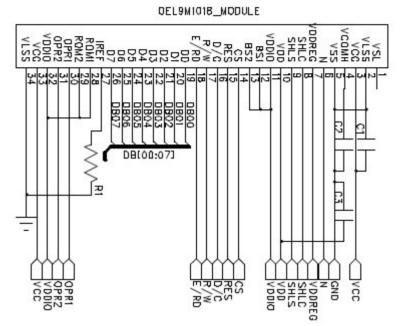
//Set Memory Addressing Mode MainOLED_WCom(0x20); MainOLED_WCom(0x02);//Page Addressing Mode //Set Lower Column Start Address MainOLED_WCom(0x00); //Set Higher Column Start Address MainOLED_WCom(0x10);

//Set Display Start Line
MainOLED_WCom(0x40);

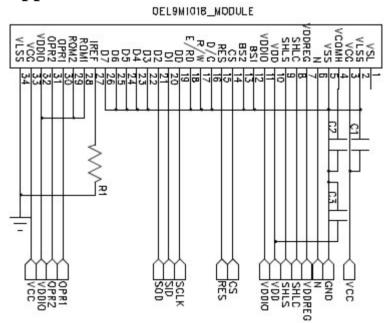
//Entire Display ON
MainOLED_WCom(0xA4);//Output follows RAM content

//Set Display Offset MainOLED_WCom(0xD3); MainOLED_WCom(0x00);

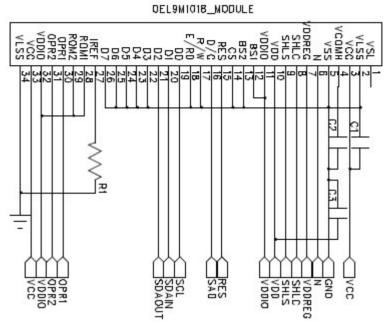
//Set Fade Out and Fade in/out MainOLED_WCom(0x23); MainOLED_WCom(0x00);


//Set Icon All OFF
MainOLED_WCom(0x90);
MainOLED_WCom(0x42);

MainOLED_WCom(0X78);//SD=0 MainOLED_WCom(0X38);//RE=0 MainOLED_WCom(0X0C);//display on


}

n SCHEMATIC EXAMPLE



♦Serial Interface Application Circuit:

◆ IIC Interface Application Circuit:

Note:

- 1. $R1=(V_{CC}-3)V/15uA=(12-3)V/15uA\approx 667K\Omega$, C1=C2=4.7uF, C3=1.0uF;
- 2. The V_{CC} should connect an external voltage;

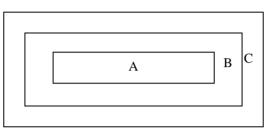
n RELIABILITY TESTS

	Item	Condition	Criterion				
High Te	emperature Storage (HTS)	85±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 				
High Ter	nperature Operating (HTO)	$80\pm2^{\circ}$ C, 96 hours	 3. After testing, the change of luminance should be within +/- 50% of initial value. 				
Low Te	emperature Storage (LTS)	-40 $\pm 2^{\circ}$ C, 200 hours	4. After testing, the change for the mono and area color must be				
Low Ter	nperature Operating (LTO)	$-30\pm2^{\circ}$ C, 96 hours	within $(+/-0.02, +/-0.02)$ and for the full color it must be within $(+/-0.04, +/-0.04)$ of				
High Tempe	erature / High Humidity Storage (HTHHS)	50±3℃, 90%±3%RH, 120 hours	initial value based on 1931 CIE coordinates.5. After testing, the change of total current				
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	- consumption should be within +/- 50% of initial value.				
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.					
Drop (Packing)	Height : 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic	and the electrical defects.				
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 					

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).

3) The test should be done after 2 hours of recovery time in normal environment.


n OUTGOING QUALITY CONTROL SPECIFICATION

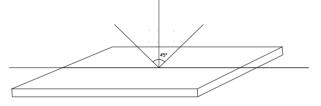
◆Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

Definition

- 1 Major defect : The defect that greatly affect the usability of product.
- 2 Minor defect : The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

♦Inspection Methods

1 The general inspection : under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5℃.

2 The luminance and color coordinate inspection : By PR705 or BM-7 or the equal equipments, in the dark room, under $25\pm5^{\circ}$ C.

♦Inspection Criteria

1 Major defect : AQL= 0.65

Ivia	Jor ucreet : MQL= 0.0						
	Item	Criterion					
		1. No display or abnormal display is not accepted					
	Function Defect	2. Open or short is not accepted.					
		3. Power consumption exceeding the spec is not accepted.					
	Outline Dimension	Outline dimension exceeding the spec is not accepted.					
	Glass Crack	Glass crack tends to enlarge is not accepted.					
2 N	Minor Defect : AQL= 1.5						

TRULY SEMICONDUCTORS LTD.

TRULY[®]信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 April.02, 2014

Item	Criterion									
	Size	(mm)	Accepted Q	ty						
Spot			Area A + Area B	Area C						
Defect (dimming		$\Phi \leq 0.07$	Ignored							
(dimming and	$\left \left(\begin{array}{c} \mathbf{Y} \\ Y$	$0.07 < \Phi \le 0.10$	3							
lighting	X	0.10<Φ≦0.15	1	Ignored						
spot)		0.15<Φ	0							
	Note : $\Phi = (x + y) / 2$									
Line	L (Length):mm	W (Width):mm	Area A + Area B	Area C						
Defect	/	W≦0.02	Ignored							
(dimming and	L≦3.0	$0.02 \le W \le 0.03$	2							
lighting	L≦2.0	$0.03 \le W \le 0.05$	1	Ignored						
line)	/	0.05 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect							
distance betw Polarizer Stain	Stain which can be wiped off lightly with a soft cloth or similarcleaning is accepted, otherwise, according to the Spot Defect and the									
	Line Defect. 1. If scratch can be s of the Spot Defect ar	een during operation, ad the Line Defect.	according to the cri	terions						
	2. If scratch can be seen only under non-operation or some special angle, the criterion is as below :									
Polarizer	L (Length): mm	W (Width):mm	Area A + Area B	Area C						
Scratch	/	W≦0.02	Ignore							
	3.0 <l≦5.0< td=""><td>$0.02 \le W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 \le W \le 0.04$	2							
	L≦3.0	$0.04 \le W \le 0.06$	1	Ignore						
	/	0.06 <w< td=""><td>0</td><td></td></w<>	0							
	Si	ze	Area A + Area B	Area C						
Dolomiar		$\Phi \leq 0.20$	Ignored							
Polarizer Air Bubble	Y	$0.20 \le \Phi \le 0.30$	2							
Air Bubble	X	$0.30 \le \Phi \le 0.50$	1	Ignored						
	· ^ ·									

	1. On the corner	
		(mm)
		x ≤ 1.5
		y ≤ 1.5
		z ≤t
	z	
Glass	2. On the bonding edge	
Defect (Glass		(mm)
Chiped)		$x \leq a / 4$
		y $\leq s / 3 \& \leq 0.7$
		z ≤t
	J. J. K. K. M.	
	3. On the other edges	
		(mm) $\begin{array}{c c} x & \leq a / 8 \\ y & \leq 0.7 \\ z & \leq t \\ \end{array}$
	Note: t: glass thickness ; s: pad width ; a: the	length of the edge
TCP Defect	Crack, deep fold and deep pressure mark on t	the TCP are not accepted
Pixel Size	The tolerance of display pixel dimension shows spec	uld be within $\pm 20\%$ of the
Luminance	Refer to the spec or the reference sample	
Color	Refer to the spec or the reference sample	

n CAUTIONS IN USING OLED MODULE

Precautions For Handling OLED Module:

1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:

- i. Avoid drop from high, avoid excessive impact and pressure.
- ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
- iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
- iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
- v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
- vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module' s life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

TRULY[®]信利 TRULY SEMICONDUCTORS LTD.

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

Precautions For Soldering OLED Module:

- 1. Soldering temperature : $260^{\circ}C \pm 10^{\circ}C$.
- 2. Soldering time : 3-4 sec.
- 3. Repeating time : no more than 3 times.
- 4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between $0^{\circ}C$ and $30^{\circ}C$, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

♦ Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦ PRIOR CONSULT MATTER

- 1. For TRULY standard products , we keep the right to change material ,process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.