	(1/53)
SPECIFICATIONS № 12TLM004	Issue: Jun. 15, 2012
Specifications for	
TET_I CD Monitor	
IFI-LCD WORLD	
Version 1.0	
MODEL COM35T3N54ZLC	
Customer's Approval	
Signature:	
Name:	
Section:	
Title:	
Date [.]	
ODTUCTECU	
UKIUSIELH	

ORTUS TECHNOLOGY CO., LTD. Sales Dept. Industrial Application

Approved by

T. Tamara

Checked by

ORTUS TECHNOLOGY CO., LTD. Product Quality Assurance

Approved by

Checked by

Takabe

Prepared by

(2	(2/53)		
Issue: Jun.	15,	2012	

Version History

Ver.	Date	Page	Description				
1.0	Jun. 15, 2012	-	- First issue				
		C					
	URIUS IEGHNOLUGI CO.,LID.						

Issue: Jun. 15, 2012

Contents

1.	Applica	ation	••••	4
2.	Outline	Specifications		
	2.1	Features of the Products	•••••	4
	2.2	Display Method	•••••	5
3.	Dimens	sions and Shape		
	3.1	Dimensions	•••••	5
	3.2	Outward Form	•••••	6
	3.3	Serial Label (S-Label)	•••••	7
4.	Pin As	signment	•••••	8
5.	Absolu	te Maximum Rating	•••••	10
6.	Recom	mended Operating Conditions	••••	10
7.	Charac	cteristics		
	7.1	DC Characteristics	••••	11
	7.2	AC Characteristics	••••	13
	7.3	Input Timing	••••	16
	7.4	Driving Timing Chart	••••	17
	7.5	Example of Driving Timing Chart	••••	18
8.	Descrip	ption of Operation		
	8.1	Power Supply	••••	20
	8.2	Serial Communication	••••	21
	8.3	Display Data Transfer	••••	33
	8.4	Standby (Power Save) Sequence	•••••	34
	8.5	Power On Sequence	••••	36
	8.6	Other Functions	••••	38
9.	Circuit			
	9.1	"MODE"="VSS"	••••	39
	9.2	"MODE"="VDD"	••••	40
	9.3	LED Circuit	••••	41
10.	Charac	cteristics		
	10.1	Optical Characteristics	•••••	42
	10.2	Temperature Characteristics	••••	43
11.	Criteria	a of Judgment		
	11.1	Defective Display and Screen Quality	••••	44
	11.2	Screen and Other Appearance	••••	45
12.	Reliabi	lity Test	••••	46
13.	Packin	g Specifications	••••	48
14.	Handlir	ng Instruction		
	14.1	Cautions for Handling LCD panels	•••••	49
	14.2	Precautions for Handling	••••	50
	14.3	Precautions for Operation	••••	50
	14.4	Storage Condition for Shipping Cartons	••••	51
	14.5	Precautions for Peeling off the Protective film	•••••	51
APPE	INDIX		••••	52

		(4/53)			
SPECIFICATIONS № 12TLM004		Issue: Jun. 15, 2012			
1. APPLICATION					
This Specification is applicable to 8.79cm (3.5 inch) TFT-LCD back-light monitor for non-military use.					
ORTUS TECHNOLOGY makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and ORTUS TECHNOLOGY shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains ORTUS TECHNOLOGY's confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of ORTUS TECHNOLOGY'S confidential information and copy right.					
If Purchaser intends to use this Products for an application wh and/or safety in functionality and/or accuracy such as transpor (aircraft, train automobile etc.), disaster-prevention/security ec equipment, Purchaser shall consult ORTUS TECHNOLOGY of	ich requires higher level of rt equipment quipment or various safety on such use in advance.	reliability			
O This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment.					
ORTUS TECHNOLOGY assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification.					
If any issue arises as to information provided in this Specification or any other information, ORTUS TECHNOLOGY and Purchaser shall discuss them in good faith and seek solution.					
ORTUS TECHNOLOGY assumes no liability for defects such during peeling off the protective film or Purchaser's assembly	as electrostatic discharge f process.	ailure occurred			
⊘ This Product is compatible for RoHS directive.					
Object substance	Maximum content [ppm]				
Cadmium and its compound 100					
Hexavalent Chromium Compound 1000					
Mercury & Mercury compound					
Polybrominated biphenyl series (PBB series)	1000				
Polybrominated biphenyl ether series (PBDE series)	1000				

2. OUTLINE SPECIFICATIONS

- 2.1 Features of the Product
 - 3.5 inch diagonal display, 960 [H] x 240 [V] dots.
 - Two kinds of input specifications can be selected.
 - -"MODE" = "VSS"
 - 8-bit / 16,777,216 colors.

Various display controls and functional selection by 3-wire serial communication method.

-"MODE" = "VDD"

6-bit / 262,144 colors. Various display controls and functional selection by terminal control.

- 3V voltage single power source.
- Timing generator (TG), Counter-electrode driving circuitry, Built-in power supply circuit
- Power save (Standby) mode capable.
- Built-in rush current reduction circuit
- Built-in panel residual charge reduction circuit
- Long life & high brightness LED back-light monitor.

Fig. 1: Dot arrangement (FPC cable placed down)

3. DIMENSIONS AND SHAPE

3.1 Dimensions

Items	Specifications	Unit	Remarks
Outline dimensions	76.90[H] × 63.90[V] × 3.13[D]	mm	Exclude FPC cable
Active area	70.32[H] × 52.74[V]	mm	8.79cm diagonal
Number of dots	960[H] × 240[V]	dot	
Dot pitch	73.25[H] × 219.75[V]	μm	
Surface hardness of the	3	Н	Load: 2.0N
polarizer			
Weight	32.0	g	Include FPC cable

3.3 SERIAL LABEL (S-LABEL)

1) Display Items

S-label indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits).

	Contents of display					
а	The least significant digit of manufacture year					
b	Manufacture month	Jan-A	May-E	Sep-I		
		Feb-B	Jun-F	Oct-J		
		Mar-C	Jul-G	Nov-K		
		Apr-D	Aug-H	Dec-L		
С	Model code	35KFC (Made in Japan)				
		35KGC (Made in Malaysia)				
		35KHC (Made in China)				
d	Serial number					

* Example of indication of Serial label (S-label)

•Made in Japan

2E35KFC000125

means "manufactured in 2012, 3.5" KF type, C specifications, serial number 000125"

Made in Malaysia

2E35KGC000125

means "manufactured in 2012, 3.5" KG type, C specifications, serial number 000125"

Made in China

2E35KHC000125

means "manufactured in 2012, 3.5" KH type, C specifications, serial number 000125"

2) Location of Serial Label (S-label) Refer to 3.2 "Outward Form".

No.	Symbol	Function			
	5	MODE(No.34pin) = "VSS"	MODE(No.34pin) = "VDD"		
1	VCOM	Common-electrode driving signal			
2	D27	Display data input for (B)	Display data input for (B)		
3	D26	00h for black display	00h for black display		
4	D25	D20:LSB D27:MSB	D22:LSB D27:MSB		
5	D24		Driver IC carries out gamma conversion		
6	D23	Driver IC carries out gamma conversion	internally.		
7	D22	internally.			
8	D21		Short to VSS		
9	D20		Short to VSS		
10	D17	Display data input for (G)	Display data input for (G)		
11	D16	00h for black display	00h for black display		
12	D15	D10:LSB D17:MSB	D12:LSB D17:MSB		
13	D14		Driver IC carries out gamma conversion		
14	D13	Driver IC carries out gamma conversion	internally.		
15	D12	internally.			
16	D11		Short to VSS		
17	D10		Short to VSS		
18	D07	Display data input for (R)	Display data input for (R)		
19	D06	00h for black display	00h for black display		
20	D05	D00:LSB D07:MSB	D02:LSB D07:MSB		
21	D04		Driver IC carries out gamma conversion		
22	D03	Driver IC carries out gamma conversion	internally.		
23	D02	internally.			
24	D01		Short to VSS		
25	D00		Short to VSS		
26	BLON	Logic signal output for external backlight circuitry	OPEN		
27	CS/STBY	CS:Chip select input for serial communication	STBY:Stanby signal		
		(Lo: active)	(Lo:Normal operation, Hi:Stanby operation)		
28	DI/DE	DI:Data input for serial communication	DE:Input data effective signal		
29	SCK/REV	SCK:Clock input for serial communication	REV:Right/Left & Up/Down Display reverse		
			(Lo:Normal Display,Hi:Reverse Display)		
30	VSYNC	Vertical sync signal input	Vertical sync signal input(negative polarity)		
31	HSYNC	Horizontal sync signal input	Horizontal sync signal input(negative polarity)		
32	CLK	Clock input for display	Clock input for display		
	1/00		(DATA sampling at the CLK falling edge)		
33	VSS				
34	MODE	Input specification selection input			
35	PUCB	Power on clear (Lo: active)			
30					
31	KVUU	Internal power supply			
<u>ა</u> გ					
39		UMEN Built in DAC reference supply			
40		Built-In DAC reference supply	~~~		
41		Contacting terminal of capacitor for charge pur	nh		
42		Contacting terminal of capacitor for charge pur	nh		
43		Contacting terminal of capacitor for charge pur	np nn		
44 45		Contacting terminal of capacitor for charge pump			
-10	VUU				

ORTUS TECHNOLOGY CO., LTD.

(8/53)

Issue: Jun. 15, 2012

(9/53)

Issue: Jun. 15, 2012

-			
	SPECIFICATIONS № 121LM004		

No.	Symbol	Function
46	COMOUT	Square wave output for common-electrode
47	VDD2	Internal power supply
48	VSS	GND
49	VSS	GND
50	VSS	GND
51	C3M	Contacting terminal of capacitor for charge pump
52	C3P	Contacting terminal of capacitor for charge pump
53	C4M	Contacting terminal of capacitor for charge pump
54	C4P	Contacting terminal of capacitor for charge pump
55	VVCOM	Voltage output for COMOUT
56	NC	OPEN
57	NC	OPEN
58	VGH	Positive supply for gate driver
59	C5P	Contacting terminal of capacitor for charge pump
60	C5M	Contacting terminal of capacitor for charge pump
61	VGL	Negative supply for gate driver
62	BLL2	LED drive power source 2 (Cathode side)
63	BLH2	LED drive power source 2 (Anode side)
64	NC	OPEN
65	NC	OPEN
66	BLH1	LED drive power source 1 (Anode side)
67	BLL1	LED drive power source 1 (Cathode side)

- Recommended connector

: KYOCERA Connector Products 6281 series [04 6281 267 2x2 846+] : HIROSE ELECTRIC FH26 series [FH26G-67S-0.3SHBW(05)]

 Please make sure to check a consistency between pin assignment in "3.2 Outward Form" and your connector pin assignment when designing your circuit.
 Inconsistency in input signal assignment may cause a malfunction.

- Since FPC cable has gold plated terminals, gilt finish contact shoe connector is recommended.

5. ABSOLUTE MAXIMUM RATING

					V33=0V
Symbol	Condition	Rating		Unit	Applicable terminal
		MIN	MAX		
VDD	Ta=25° C	-0.3	6.0	V	VDD
VI1		-0.3	VDD+0.3	V	POCB,CLK,VSYNC,HSYNC
					D[27:00],MODE
VI2		-0.3	6.0	V	CS/STBY,DI/DE,SCK/REV
IL	Ta = 25° C		35	mΑ	BLH1 - BLL1
	Ta = 70° C		15		BLH2 - BLL2
Tstg		-30	80	°C	
Hstg		Non condensir	ng in an	%	
		environmental moisture at or			
		less than 40°C90%RH			
	Symbol VDD VI1 VI2 IL Tstg Hstg	Symbol Condition VDD Ta=25° C VI1 VI2 IL Ta = 25° C Ta = 70° C Tstg Hstg	SymbolConditionRatVDDTa=25°C-0.3VI1-0.3-0.3VI2-0.3-0.3ILTa = 25°C-Ta = 70°CTstg-30Non condensite environmental less than 40°C	Symbol Condition Rating VDD Ta=25° C -0.3 6.0 VI1 -0.3 VDD+0.3 VI2 -0.3 6.0 IL Ta = 25° C -0.3 6.0 IL Ta = 25° C - 35 Ta = 70° C - 15 Tstg -30 80 Hstg Non condensing in an environmental moisture at or less than 40° C90% RH	$\begin{array}{c c c c c c c c } Symbol & Condition & Rating & Unit \\ \hline MIN & MAX & & \\ \hline \\ VDD & Ta=25°C & -0.3 & 6.0 & V & \\ \hline VI2 & & -0.3 & 6.0 & V & \\ \hline VI2 & & -0.3 & 6.0 & V & \\ \hline IL & Ta=25°C & - & 35 & mA & \\ \hline Ta=70°C & - & 15 & & \\ \hline Tstg & & -30 & 80 & °C & \\ \hline Hstg & & Non condensing in an & % & \\ environmental moisture at or & \\ enss than 40°C90%RH & & \\ \hline \end{array}$

Note: Please set "Power-on" and "Power-off" sequences in accordance with the "standby sequence" described later.

6. RECOMMENDED OPERATING CONDITIONS

							VSS=0V	
Item	Symbol	Condition		Rating		Unit	Applicable terminal	
	-		MIN	TYP	MAX			
Supply voltage	oltage VDD 2.7 3.0 3.6		3.6	V	VDD			
Input voltage 1 for logic	VI1	VDD=2.7~3.6V	0	—	VDD	V	POCB,CLK,VSYNC	
							HSYNC,D[27:00] MODE	
Input voltage 2 for logic	VI2		0	-	5.5	V	CS/STBY,DI/DE SCK/REV	
Common-electrode	VCOMDC	MODE="VSS"						
center voltage		VCOMDC[5:0]	1.48	1.86	2.24	V	COMDC	
Note 1		=16h~3Ch						
		MODE="VDD"	1.48	1.86	2.24	V		
Operational temperature	Тор	Note 2	-20	+25	+70	°C	Surface of panel	
range Note 3								
Operating humidity range Ho		Ta ≦ 40°C	20	—	85	%		
		Ta > 40°C	Non conde	nsing in an				
			environmer	ntal moisture	e at or less			
			than 40°C8	35%RH.				

Note 1: Common-electrode center voltage indicates that optimum VCOMDC value lies within the bound of these voltages, but it does not mean that the whole range of voltages are the optimum VCOMDC value. This product must to be used with optimized VCOMDC value.

Note 2: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item 10."CHARACTERISTICS".

Note 3: Acceptable Forward Current to LED is up to 15mA, when Ta=+70 °C. Do not exceed Allowable Forward Current shown on the chart below.

7. CHARACTERISTICS

7.1 DC characteristics

7.1.1 Display Module

(Unless otherwise noted, Ta=25°C,VDD												
Item	Symbol	Condition		Rating		Unit	Applicable terminal					
	-		MIN	TYP	MAX							
Schmitt	VP	VDD=2.7~3.6V	0.47×VDD	0.60×VDD	0.73×VDD	V	CS/STBY,DI/DE					
Threshold							SCK/REV,VSYNC					
voltage	VN		0.30×VDD	0.43×VDD	0.56×VDD	V	HSYNC,D[27:00]					
							CLK,POCB					
	VH		0.08×VDD	0.17×VDD	0.27×VDD	V						
Innut Cianal	N (11.1		0.7.1/00				MODE					
Input Signal	VIH		0.7×000	_		<u> </u>	MODE					
Voltage	VIL		0	-	0.3*VDD	<u>v</u>	DOOD					
Pull up	кри		45	91	182	KΩ	POCB					
resister value	Dut		45	0.1	400		MODE					
	кра		45	91	182	KΩ	MODE					
resister value			4.0	E C	6.1	V						
Valtara	VDDZ		4.0	5.0	0.1	v	VDDZ					
Output	ИСН		12.5	13.3	13.5	V	ИСН					
Voltage2	VGIT		12.5	15.5	15.5	v	VOIT					
	VGI		-13.5	_13.3	-12.5	V	VGI					
Voltage3	VOL		-10.0	-10.0	-12.0	v	VOL					
Output	VOH	$l_{0} = -1.0 mA$	VDD - 0.5		VDD	V	BLON					
Voltage4	VOI	lo = 1.0 mA	0	_	0.5	V	BLOIN					
Operating		fCI K=6.75MHz	Ŭ		0.0	•						
Current	122	Color bar display	_	8.0	15.0	mA	ססע					
		BRIGHT[5:0],CONTRAST[3:0]										
		= Initial value										
Standby	IDDs	MODE="VSS", Other input with	—	11.0	30.0	μA	VDD					
Current		constant voltage.			_	•						
		MODE="VDD", Other input with	—	44.0	96.0	μA	1					
		constant voltage.				•						

At "MODE" = "VSS"

(Unless otherwise noted, T	a=25°C,`	VDD=3.0V,VSS=0V)	
	11.1		1

			(,
Item	Symbol	Condition		Rating	Unit	Applicable terminal	
	-		MIN	TYP			
VcomDC	VCOMDC	VCOMDC[5:0]=00h	0.94	1.04	1.14		COMDC
Adjusted value		VCOMDC[5:0]=1Fh	1.56	1.66	1.76	V	
-		VCOMDC[5:0]=3Ch	2.14	2.24	2.34		

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)
---	---	---

Item	Symbol	Conditio	on		Unit		
				MIN	TYP	MAX	
BRIGHT	VLCD	BRIGHT[5:0]=00h	D[*7:*0]=00h	4.10	4.25	4.40	
Adjusted value		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.92	1.07	1.22	
		BRIGHT[5:0]=1Ah	D[*7:*0]=00h	3.58	3.73	3.88	V
		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.40	0.55	0.70	
		BRIGHT[5:0]=2Eh	D[*7:*0]=00h	3.18	3.33	3.48	
		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.00	0.15	0.30	
CONTRAST	VLCD	CONTRAST[3:0]=0h		1.35	1.50	1.65	
Adjusted value		VLCD(D[*7:*0]=00h)-VLC	CD(D[*7:*0]=FFh)				
		CONTRAST[3:0]=Eh		3.03	3.18	3.33	V
		VLCD(D[*7:*0]=00h)-VLC	CD(D[*7:*0]=FFh)				
		CONTRAST[3:0]=Fh		3.15	3.30	3.45	
		VLCD(D[*7:*0]=00h)-VLC	CD(D[*7:*0]=FFh)				

ORTUS TECHNOLOGY CO., LTD.

(11/53)

7.1.2 Backlight

7.1.Z Bac	Kiight						
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
Forward current	IL25	Ta=25°C	-	20.0	35.0	mA	BLH1 - BLL1
	IL70	Ta=70°C	-	-	15.0	mA	BLH2 - BLL2
Forward voltage	VL	Ta=25°C, IL=20.0mA	-	8.7	9.0	V	
Estimated Life	LL	Ta=25°C, IL=20.0mA	-	(50,000)	-	hr	
of LED		Note1					

Note1: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.

- This figure is given as a reference purpose only, and not as a guarantee.

- This figure is estimated for an LED operating alone.

- As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature.

- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.

(13/53) Issue: Jun. 15, 2012

7. 2. AC CHARACTERISTICS 7.2.1 Display Module

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
CLK Low period	tw1L	0.1×VDD or less	20	1	—	ns	CLK
CLK High period	tw1H	0.9×VDD or more	20	1	—	ns	
Setup time 1	tsp1		10	1	_	ns	CLK,HSYNC,VSYNC
Hold time 1	thd1		10	Ι	—	ns	D[27:00],DI/DE Note1
Setup time 2	tsp2		2	Ι	—	CLK	VSYNC,HSYNC
Hold time 2	thd2		2	Ι	—	CLK	
VSYNC pulse width	tw2H		4	1	—	CLK	VSYNC
HSYNC pulse width	tw3H		2CLK	1	20 µ s		HSYNC
CLK frequency	fCLK			6.75	9.0	MHz	CLK

Note1: The Rating value of the terminal DI/DE is effective at "MODE" = "VDD".

Note: Unless otherwise noted, each item is defined between each 50 % point of signal amplitude.

ORTUS TECHNOLOGY CO., LTD.

(15/53)

7.3 Input Timing

7.3.1 MODE = "VSS"

Item	Symbol		Rating		Unit	Applicable terminal
		MIN	TYP	MAX		
CLK frequency	fCLK	—	6.75	9.0	MHz	CLK
VSYNC Frequency Note1	fVSYNC	54	60	66	Hz	VSYNC
Number of Frame Line	tv	—	262	291	Н	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	4CLK	3H			VSYNC,CLK
Vertical Back Porch	tvb	0 Note2	6	31	Н	VSYNC,HSYNC,D[27:00]
Vertical Display Period	tvdp	_	240	-	Н	VSYNC,HSYNC,D[27:00]
HSYNC frequency	fHSYNC	—	15.7	_	kHz	HSYNC
HSYNC Cycle	th	—	429	573	CLK	HSYNC,CLK
HSYNC Pulse Width	tw3H	2CLK	_	20 µ s		HSYNC,CLK
Horizontal Back Porch	thb	5	42	_	CLK	HSYNC,CLK,D[27:00]
Horizontal Display Period	thdp	_	320	_	CLK	D[27:00],CLK

Note1: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency. Note2: When VDISP=0, please use odd number for the setting of the total number of lines that compose one field.

7.3.2 MODE = "VDD"

Item	Symbol		Rating		Unit	Applicable terminal
		MIN	TYP	MAX		
CLK frequency	fCLK	—	6.75	9.0	MHz	CLK
VSYNC Frequency Note1	fVSYNC	54	60	66	Hz	VSYNC
Number of Frame Line	tv	—	262	291	Н	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	4CLK	ЗH	—		VSYNC,CLK
Vertical Back Porch	tvb	0 Note2	6	21 Note3	Н	VSYNC,HSYNC,DE,D[27:02]
Vertical Display Period	tvdp	—	240	—	Н	VSYNC,HSYNC,D[27:02]
HSYNC frequency	fHSYNC	—	15.7	—	kHz	HSYNC
HSYNC Cycle	th	—	429	573	CLK	HSYNC,CLK
HSYNC Pulse Width	tw3H	2CLK	—	20 µ s		HSYNC,CLK
Horizontal Back Porch	thb	5	42	77 Note3	CLK	HSYNC,CLK,DE,D[27:02]
DE Pulse Width	tw4H	—	320	—	CLK	DE,CLK
Horizontal Display Period	thdp	_	320	_	CLK	D[27:02],CLK

Note1: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency. Note2: When Vertical Back Porch is "0", please use odd number for the setting of the total number of lines

that compose one field.

Note3: When DE keeps "Lo" for 21H and 77CLK or longer, start capturing data automatically from "22H and 78CLK".

(17/53)

(19/53)

8.2.2 Serial Communication Timing

After input signal of CS drops from Hi to Lo, the Shift Resister loads 12 bits of serial data from DI at the rising edge of the input signal of SCK.

Mode register and DAC register load the stored data at the rising edge of the input signal of CS. When loaded DI data during the low period of CS is less than 12 bits, all loaded data are discarded . When loaded DI data during the low period of CS is 12 bits or more, the last read of 12 bits is used . Each command is executed by VSYNC immediately after the rising the edge of CS. Serial Communication Control Block is configurable at any time during display and standby mode

as it is completely independent from other circuitry run by CLK in the monitor.

(22/53)

SPECIFICATIONS № 12TLM004

8.2.3 Serial Communication Data

Configuration of serial data for DI terminal

First LSB											Last MSB
DIO	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
	Register	address	5	Data							

							LSB	LSB MSB I					LSB	LSB M						ИSВ		
Register		Add	ress		Number of	Effect of increase			Р	reset	t valu	le					Use	r sett	ing v	alue		
	DI0	DI1	DI2	DI3	bits for data	of value	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
BRIGHT	0	0	0	0	6 (DI6-DI11)	→Brighter	-	1	0	1	0	1	1	0	-	-		ι	lser s	settin	g	
VCOMDC	1	0	0	0	6 (DI6-DI11)	→higher DC voltage	-	-	1	1	1	1	1	1	-	-	Opti	mum	sett	ing fo	or ea moi	ch nitor
CONTRAST	0	1	0	0	4 (DI4-DI7)	→higher contrast	0	1	1	1	-	-	-	-	Us	ser s	etting	ļ	-	-	-	-
PANEL1	0	1	0	0	3 (DI9-DI11)	-	-	-	-	-	-	0	0	1	-	-	-	-	-	0	0	1
VDISP	1	1	0	0	5 (DI4-DI8)	→longer vertical flyback time	1	0	1	0	1	-	-	-		Use	User setting				-	-
PANEL2					2 (DI10-DI11)	-	-	-	-	-	-	0	0	0	-	-	-	-	-	0	0	0
HDISP	0	0	1	0	8 (DI4-DI11)	→longer horizontal flyback time	0	1	0	1	0	0	1	0		User setting						
PANEL3	1	0	1	0	8 (DI4-DI11)	-	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0
FUNC1	0	1	1	0	8 (DI4-DI11)	-	0	0	0	1	0	0	0	0	0	ι	Jser s	settin	ig	0	0	0
FUNC2	1	1	1	0	8 (DI4-DI11)	-	1	1	1	1	0	0	0	0	Use	er set	tting	1	0	0	-	-
FUNC3	0	0	0	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0		ι	lser s	settin	g	
FUNC4	1	0	0	1	8 (DI4-DI11)	-	1	0	0	0	0	0	0	0	1			Use	er set	ting		
PANEL4	0	1	0	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL5	1	1	0	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
PANEL6	0	0	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL7	1	0	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL8	0	1	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL9	1	1	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Configuration of FUNC1 register

bit	Function	Description		
DI4	TEST 0	Fix it to 0.		
DI5	Vertical flip display	Flip image vertically (from top to bottom) 0: Normal, 1: Vertical flip		
DI6	Horizontal flip display	Flip image horizontally (from side to side) 0: Normal, 1: Horizontally flip		
DI7	Backlight control	Set BLON signal that controls external backlight circuitry. 0: Low 1: High		
DI8	Standby control	Switch between standby and operation. 0: standby, 1: operation		
DI9	TEST 1			
DI10	TEST 2	Fix it to 0.		
DI11	TEST 3			

Configuration of FUNC2 register

bit	Function	Description				
DI4	HSYNC polarity	Change polarity of HSYNC. 0: Positive polarity, 1: Negative polarity				
DI5	VSYNC polarity	Change polarity of VSYNC 0: Positive polarity, 1: Negative polarity				
DI6	CLK polarity	Change polarity of CLK. 0: Noninversion 1: Inversion				
DI7	TEST 4	Fix it to 1.				
DI8	TEST 5	Fix it to 0.				
DI9	TEST 6					
DI10	NC	-				
DI11	NC					

(23/53)

Issue: Jun. 15, 2012

SPECIFICATIONS № 12TLM004

FUNC3 Register Configuration						
bit	Function	Description				
DI4	Test 7	Please fix it to "0".				
DI5	Test 8					
DI6	GM1[0]	Register for gamma potential correction when input data D [*7:*0] is 192(=C0h).				
DI7	GM1[1]					
DI8	GM1[2]					
DI9	GM2[0]	Register for gamma potential correction when input data D[*7:*0] is 148(=94h).				
DI10	GM2[1]					
DI11	GM2[2]					

FUNC4 Register Configuration

bit	Function	Description				
DI4	Test 9	Please fix to "1".				
DI5	Select gamma	Select gamma correction curves. 0: built-in gamma correction curve				
	correction curve	1: user-established gamma correction curve				
DI6	GM3[0]	Register for gamma potential correction when input data D [*7:*0] is 108(=6Ch).				
DI7	GM3[1]					
DI8	GM3[2]					
DI9	GM4[0]	Register for gamma potential correction when input data D[*7:*0] is 64(=40h).				
DI10	GM4[1]					
DI11	GM4[2]					

TEST 0 to TEST 9

Please fix DI4, DI9 through DI11 of the FUNC1 registers to "0". Please fix DI7 of FUNC2 to "1", DI8 and DI19 of FUNC2 to "0". DI10 and DI11 are no connection. Please fix DI4 and DI5 of FUNC3 to "0". Please fix DI4 of FUNC4 to"1".

User Setting Values

Please use "User setting values" to set up PANEL1 through PANEL9, DI4, DI9 through DI11 of FUNC1 and DI7 through DI9 of FUNC2.

Use of unspecified values may cause malfunction.

	(27/53)
SPECIFICATIONS № 12TLM004	Issue: Jun. 15, 2012
(6) PANEL Setting 2 (PANEL2)	
PANEL 2 register 3-bit (DI9 and DI11) can select operating conditions from 8 choices. Please set this register to these values.	
DI9 DI10 DI11 0 0 0	
(7) Horizontal Flyback Period Setting (HDISP)	
Horizontal flyback time can be set from 5 to 258CLK by HDISP register with 8-bit of DI14 thru However, set value of 0 or 1 is prohibited. Actual flyback time is "setting value plus 3CLK". When initial value is 74, a data after a lapse of 74 + 3CLK=77CLK from the rising edge of HS as shown in the following chart.	u DI11. SYNC is displayed
This function can also be used for horizontal display range setup (Horizontal position setup).	
Example : HDISP=74(4Ah)	
HSYNC	
D[27:00]	
(8) PANEL Setting 3 (PANEL3)	
Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 of PANEL 3 register. Please set this register to these values.	to DI11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Issue: Jun. 15, 2012

(9) FUNCTION SET 1 (FUNC1)

FUNC1 register sets and controls the following functions by its each bit of DI5,DI6 and di8.

Vertical Flip Display (Up/Down)

DI5=0 for normal display, DI5=1 for vertical flip display

After completing the setup by serial communication, the selected display mode is carried out by VSYNC. (Normal display is defined when "Product Number" logo on the front case is placed at the bottom.)

<u>Horizontal Flip Display (Right/Left)</u> DI6=0 for normal display, DI6=1 for horizontal flip display The selected display mode is executed at VSYNC after setup by serial communication.

(Please refer to the section 8.3 "Display Data Transfer".)

Backlight Control

DI7 switches the backlight driver IC. BLON terminal outputs set value of DI7. Since its output level is VDD or VSS, this function can also be used for other controls than the backlight. After completing the setup by serial communication, the selected display mode is carried out by VSYNC.

Standby Mode

DI8=0 for standby mode, DI8=1 for normal operation

Since default value of DI8 after power on is "0", it automatically goes to standby mode.

Power consumption is significantly reduced in standby mode by disabling the timing generator and the LCD driving circuitry, and disconnecting current lines.

No image is displayed (white raster display) during standby mode unless DI8 is set to 1 for normal operation by serial communication. Serial data can be received by serial communication block even in standby mode. Please refer to the section 8.4 "Standby (Power Save) Sequence" for standby mode and power on/off sequence. When normal operation is switched to standby mode, afterimage treatment is carried out before switching to standby mode.

SPECIFICATIONS № 12TLM004	Issue: Jun. 15, 2012						
(10) FUNCTION SET 2 (FUNC2) FUNC2 register sets and controls the following functions by its each bit of DI4 thru DI6.							
<u>HSYNC,VSYNC,CLK Polarity Switching</u> Polarity of HSYNG is switched by DI4. DI4=0 for positive polarity input, DI4=1 for negative polarity input. Polarity of VSYNC is switched by DI5. DI5=0 for positive polarity input, DI5=1 for negative polarity input. Polarity of CLK is switched by DI6. DI6=0 for non-inversion, DI6=1 for inversion.							
Initial value of DI4, DI5 and DI6 are "1". The following chart shows polarity of each signal at the initial value. Please set change of VSYNC, HSYNC and display data at the rising edge of CLK.							
VSYNC	—						
HSYNC	—						
	7						
D[27:00]	_						
Polarity of each signal can be changed independently by logic of DI4, DI5 and DI6.							
Example 1 : DI4=0,DI5=DI6=1 (HSYNC has positive polarity and Hi active)							
VSYNC	—						
HSYNC	_						
	7						
D[27:00]	— —						
Example 2 : DI4=1,DI5=0,DI6=1 (VSYNC has positive polarity and Hi active)							
VSYNC	_						
HSYNC	—						
	7						
D[27:00]	— —						
Example 3 : DI4=DI5=1,DI6=0 (CLK is reversed, data is read at the rising edge of CLK.)							
VSYNC	—						
HSYNC	—						
	_						
D[27:00]	—						
ORTUS TECHNOLOGY CO., LTD.							

(29/53)

Issue: Jun. 15, 2012

Gamma Curve Correction Select

DI5=0 of FUNC 4 Register:	Deactivate user configurable gamma correction circuitry. Use built-in gamma curve.
DI5=1 of FUNC 4 Register:	Activate user configurable gamma correction circuitry.

Use user configurable gamma correction curve.

Setting Method of User Configurable Gamma Correction Curve

Gamma curve can be corrected by using GM1[2:0] thru GM4[2:0] registers of FUNC 3 and FUNC 4. GM1 thru GM4 corrects each following gamma potential respectively.

 $GM1[2:0] \rightarrow Input data D[*7:*0] = Register for gamma potential correction at 192(=C0h)$ GM2[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 148(=94h)GM3[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 108(=6Ch)GM4[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 64(=40h)

Below chart shows characteristic curve of gray scale input data - liquid crystal applied voltage. Input value of "0" is assumed to be 0% of applied voltage to liquid crystal, and input value of "225" is assumed to be 100% of applied voltage to liquid crystal. Adjustable range of GM1 thru GM4 registers are described below.

	GM4[2:0]	GM3[2:0]	GM2[2:0]	GM1[2:0]
00h	No correction	No correction	No correction	No correction
01h	54.5%	66.7%	75.8%	84.8%
02h	51.5%	63.6%	72.7%	81.8%
03h	48.5%	60.6%	69.7%	78.8%
04h	45.5%	57.6%	66.7%	75.6%
05h	42.4%	54.5%	63.6%	72.7%
06h	39.4%	51.5%	60.6%	69.7%
07h	36.4%	48.5%	57.6%	66.7%

(31/53)

SPECIFICATIONS № 12TLM004

Issue: Jun. 15, 2012

When no correction is made to gamma potential of GM1 to GM4; The voltages at "0" and "255" are fixed in accordance with the contrast and brightness settings, and voltages at 1 to 254 are determined by resister split ratio produced by the driver IC built-in gamma curve resister. (Refer to the chart in previous page) Liquid crystal applied voltage takes the values of 45.7%, 58.5%, 66.4% and 74,8% when input date is 64, 108, 148 and 192 respectively.

When correction is made to any of GM1 to GM4 by user;

The voltage is corrected in accordance with a correction point and its set value configured by user.

The voltages at 1 to 254 are determined by resister split ratio between voltage at 0 and 225 and input data.

Example:

Darken gray scale in black side.

 \rightarrow Change liquid crystal applied voltage at the 64 point to darken side.

 \rightarrow Set GM4[2:0] to 7h, GM3[2:0] to 6h, GM2[2:0] to 5h and GM1[2:0] to 4h.

(32/53)SPECIFICATIONS № 12TLM004 Issue: Jun. 15, 2012 (12) PANEL SELECT 4 (PANEL 4) Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 4 register. Please set this register to this value. DI5 DI6 DI7 DI4 DI8 DI9 DI10 DI11 0 0 0 0 0 0 0 0 (13) PANEL SELECT 5 (PANEL 5) Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 5 register. Please set this register to this value. DI4 DI5 DI6 DI7 DI8 DI9 DI10 DI11 0 1 0 0 0 0 0 0 (14) PANEL SELECT 6 (PANEL 6) Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 6 register. Please set this register to this value. DI4 DI5 DI6 DI7 DI8 DI9 DI10 DI11 0 0 0 0 0 0 0 0 (15) PANEL SELECT 7 (PANEL 7) Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 7 register. Please set this register to this value. DI6 DI7 DI8 DI9 DI10 DI11 DI4 DI5 0 0 0 0 0 0 0 0 (16) PANEL SELECT 8 (PANEL 8) Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 8 register. Please set this register to this value. DI9 DI10 DI11 DI6 DI7 DI8 DI4 DI5 0 0 0 0 0 0 0 0 (17) PANEL SELECT 9 (PANEL 9) Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 9 register. Please set this register to this value. DI9 DI10 DI11 DI4 DI5 DI6 DI7 DI8 0 0 0 0 0 0 1 0

	(33/53)					
SPECIFICATIONS № 12TLM004	Issue: Jun. 15, 2012					
8.3 Display Data Transfer						
Input display data to D[27:00] D*0:LSB, D*7:MSB						
Horizontal Timing and Order of Input Data						
Display data shall be input in synchronization with CLK. Polarity of CLK can be selected by DI16 of FUNCTION SET 2 (FUNC2).(at "MODE" = "VSS"))					
Normal display: Normal display is defined as the orientation that the FPC cable on the TFT is placed on the downside.	monitor					
HSYNC	· · ·					
ськ правление на полото продела се на правление на полото полото полото полото полото полото полото полото пол	···					
Input data Horizontal Back Porch	319 320					
Pixel $\begin{array}{c} \psi & \psi & \psi & \psi \\ \hline x_1 & \hline x_2 & \hline x_3 & \hline x_4 & \hline x_5 & \cdots & \hline x_{318} \end{array}$	¥ ¥ X319 X320 ····					
Horizontal flip display						
Input data	319 <u>320</u>					
VVVVPixel $(X320)$ $(X319)$ $(X318)$ $(X317)$ $(X316)$ $(X316)$	$\times $					
* Above timing chart shows correlation between input data and pixels in visual way and it is n	ot actual timing chart.					
Vertical Timing and Order of Input Data						
Transfer of display data that consist of 240 lines in 1 field is explained below. The correlations between input line and display line at normal display and vertical flip display	are described below.					
Normal display: Normal display is defined as the orientation that the FPC cable on the TFT is placed on the downside.	monitor					
VSYNC						
Input line No. (239) (240) (1) (1) (2) (3) (4) (5) (6)	239 240					
Display line No. $(Y_{238}, Y_{239}, Y_{240}, \dots, Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, \dots, Y_1, Y_2, Y_2, \dots, Y_1, Y_2, Y_2, \dots, Y_1, Y_2, Y_2, \dots, Y_1, \dots, $	238 Y239 Y240					
Vertical flip display						
VSYNC	••••					
Input line No. (239) (240) (1) (1) (2) (3) (4) (5) (6)	239 240					
Display line No. Y3 Y2 Y1 Y240 Y239 Y238 Y237 Y236 Y235	<u>Y3</u> <u>Y2</u> <u>Y1</u>					
* Above timing chart shows correlation between input data and pixels in visual way and it is n	ot actual timing chart.					

SPECIFICATIONS № 12TLM004	Issue: Jun. 15, 2012
8.4 Standby (Power Save) Sequence	
When "MODE" = "VSS", serial communication signals of CS, DI and SCK shall be input after $VDD \ge [0.9 \times VDD]V$ for more than 20 msec or more after power on. All initial values of serial data shall be set during this standby mode. Other logic input signals of HSYNC, VSYNC, D[27:00] and CLK shall be input simultaneousl after power on (specified period marked ① in next page). All input signals shall be set to a reduce power consumption during standby mode.	r VDD stabilizes at ly with VDD or fixed DC to
Please follow the recommended power on/off sequence described below.	
 Right after power on, serial communication registers are initialized. Therefore, standby control bit takes the value of "0". By this procedure the LCD goes into standby mode which significantly reduces power con No image is displayed (white raster display) on the screen and internal power circuit is de during standby mode. 	nsumption of the LCD. eactivated
is released by serial communication.	naby mode
② When the standby control bit is set to "1" by serial communication or the terminal "STBY" the standby mode is released by following VSYNC and the power supply circuit of buildin No image is displayed (white raster display) on the screen for 5 fields from the following \ after the release of standby mode.	turn to "Lo" from "Hi", g into begins operating. /SYNC
③ LCD goes into normal display (display under normal operation) at the timing of VSYNC at of the procedure described in ②. Backlight shall be lit up 1 or more field after going to n	fter completion ormal display.
④ Standby mode can be established by setting standby control bit to "0" by serial communic the terminal "STBY" turn to "Hi" from "Lo". Display data is changed to FFh at VSYNC that comes right after this serial communicatio and afterimage treatment is performed for 2 fields of VSYNC. Displayed image under no immediately changed to white raster display by this treatment. Continue to input sync signal (HSYNC,VSYNC,CLK) during this period.	cation or n, ormal display is
(5) LCD goes into standby mode, which is same as ① above, at the timing of VSYNC after of of the procedure described in ④. Serial communication data is retained during standby Serial communication signal and input signal can be deactivated	completion mode.
② to ④ repeats same procedures as described above.	
Below procedure must be followed for power-off.	
 Implement standby setting. After standby setting, continue to input sync signals (HSYNC, VSYNC, CLK) during the image treatment period (until VSYNC after 2 fields subsequent to standby setting). After ②, power off VDD after 30msec or more Stop the sync signals (HSYNC, VSYNC, CLK) subsequent to afterimage treatment period and no later than VDD off. 	d

(34/53)

(37/53)

8.6 Other Functions

·Built-in Panel Residual Charge Reduction Circuit

When the power turns off in accordance with the mandatory procedure described in the section 8.4 "Standby (Power Save) Sequence", afterimage treatment is carried out after standby mode is set. This circuit automatically reduces panel's residual charge and prevents afterimage for a long time even if standby mode setting fails to be made before power-off.

Issue: Jun. 15, 2012

SPECIFICATIONS № 12TLM004

10. Characteristics

10.1 Optical Characteristics					
< Measurement Condition	>				
Measuring instruments: CS1000 (KONICA MINOLTA), LCD7000 (OTSUKA ELECTRONICS					
	EZcontrast160D(ELDIM)				
Driving condition:	VDD = 3.0V, VSS = 0V				
	Optimized VCOMDC				
Backlight:	IL=20mA				
Measured temperature: Ta=25° C					

Item		Symbol	Condition	MIN	TYP	MAX	Unit	Note No.	Remark
Response time	Rise time	TON	[Data]= FFh → 00h	_	_	40	ms	1	*
	Fall time	TOFF	[Data]= 00h → FFh	_	_	60	ms		
Contrast ratio		CR	[Data]= FFh / 00h	240	400	—		2	
5	Left	θL	[Data]=	80	-	-	deg	3	*
vinç gle	Right	θR	FFh / 00h	80	-	-	deg		
/ie/	Up	φU	CR≧10	80	-	-	deg		
_	Down	φD		80			deg		
W/bite	Chromaticity	х	[Data]=FFh	White ch	romaticit	y range		4	
white Chromaticity		у							
Burn-in				No no should l of w	oticeable be observ indow pa	burn-in i ved after ittern disp	mage 2 hours blay.	5	
Center brightness		[Data]=FFh	350	500	_	cd/m ²	6		
Brightness distribution		[Data]=FFh	70	_	_	%	7		

* Note number 1 to 7: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics".

X Measured in the form of LCD module.

[White Chromaticity Range]

х	у
0.25	0.35
0.25	0.28
0.34	0.28
0.35	0.30
0.35	0.37
0.34	0.38
0.27	0.38

White Chromaticity Range

10.2 Temperature Characteristics

< Measurement Condition > Measuring instruments: Driving condition:

Backlight:

CS1000 (KONICA MINOLTA), LCD7000(OTSUKA ELECTRONICS) VDD = 3.0V, VSS = 0V Optimized VCOMDC IL=20mA

Itom			Specification		Pomark
1	lem		Ta=-10° C	Ta=70° C	Reliain
Contrast ratio		CR	40 or more	40 or more	
Response time	Rise time	TON	200 msec or less	30 msec or less	*
Response time	Fall time	TOFF	300 msec or less	50 msec or less	*
Display Quality			No noticeable display d should be observed.	lefect or ununiformity	Use the criteria for judgment specified in the section 11.

% Measured in the form of LCD module.

11. Criteria of Judgment

11.1 Defective Display and Screen Quality

Test Condition:	Observed TFT-LCD monitor from front during operation with the following conditions
Driving Signal	Raster Patter (RGB in monochrome, white, black)
Signal condition	[Data] : 00h, A0h, FFh (3steps)
Observation distance	30 cm
Illuminance	200 to 350 lx
Backlight	IL=20mA

Defect item		Defect content		Criteria	
	Line defect	Black, white or color	line, 3 or more neighboring defective dots	Not exists	
lity		Uneven brightness of	on dot-by-dot base due to defective		
۵na		TFT or CF, or dust is	s counted as dot defect		
y G	Det defect	(brighter dot, darker	dot)	Pofer to table 1	
spla	Dol delect	High bright dot: Visit	ole through 2% ND filter at [Data]=00h		
Dis		Low bright dot: Visil	ble through 5% ND filter at [Data]=00h		
		Dark dot: Appear da	rk through white display at [Data]=A0h		
	Dirt	Point-like uneven br	ightness (white stain, black stain etc)	Invisible through 1% ND filter	
У		Point-like	0.25mm<φ	N=0	
alit	Foreign		0.20<φ≦0.25mm	N≦2	
Qu			φ≦0.20mm	Ignored	
sen	particie	Liner	3.0mm <length 0.08mm<width<="" and="" td=""><td>N=0</td></length>	N=0	
cre			length≦3.0mm or width≦0.08mm	Ignored	
0	Others			Use boundary sample	
	Oulers			for judgment when necessary	

 $\phi(mm)$: Average diameter = (major axis + minor axis)/2 Permissible number: N

Table 1					
Area	High bright dot	Low bright dot	Dark dot	Total	Criteria
А	0	2	2	3	Permissible distance between same color bright dots (includes neighboring dots): 3 mm or more
В	2	4	4	6	Permissible distance between same color high bright dots (includes neighboring dots): 5 mm or more
Total	2	4	4	7	

<Landscape model>

B zor	↓1		
	A zone		4
			\downarrow^{1}
$\underset{1}{\longleftrightarrow}$	$\xleftarrow{4}$	\leftrightarrow	

Division of A and B areas

B area: Active area

Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure)

SPECIFICATIONS № 12TLM004

11.2 Screen and Other Appearance

Testing conditions

Observation distance Illuminance

30cm 1200∼2000 lx

	Item	Criteria	Remark
	Flaw	Ignore invisible defect when the backlight is on.	Applicable area:
rer	Stain		Active area only
ariz	Bubble		(Refer to the section
Pol	Dust		3.2 "Outward form")
	Dent		
	S-case	No functional defect occurs	
	FPC cable	No functional defect occurs	

12. Reliability Test

Test item		Test condition	number of failures
	High temperature storage	Та=80° С. 240Н	
	Low temperature storage	Ta=-30°C 240H	0/3
ы	High temperature & high	Ta=60° C. RH=90% 240H	0/3
/ te;	humidity storage	non condensing X	
oility	High temperature operation	Tp=70°C 240H	0⁄3
Irat	Low temperature operation	Tp=-20° C 240H	0⁄3
Б	Lligh town 9 humid energian	Tp=40°C, RH=90% 240H	0⁄3
	High temp & numic operation	non condensing 🛛 🕺	
	Thermal shock storage	-30←→80° C(30min/30min) 100 cycles	0⁄3
		Confirms to EIAJ ED-4701/300	0⁄3
	Electrostatic discharge test	C=200pF,R=0Ω,V=±200V	
	(Non operation)	Each 3 times of discharge on and power supply	
		and other terminals.	
	Surface discharge test	C=250pF, R=100Ω, V=±12kV	0⁄3
est	(Non operation)	Each 5 times of discharge in both polarities	
al te		on the center of screen with the case grounded.	
ent	EBC tongion togt	Pull the FPC with the force of 3N for 10 sec.	0⁄3
Ĕ	FFC tension test	in the direction - 90-degree to its	
/iro		original direction.	
en	EBC bond tost	Pull the FPC with the force of 3N for 10 sec.	0⁄3
g	FFC bend test	in the direction -180-degree to its	
ani		original direction. Reciprocate it 3 times.	
sch	Vibration test	Total amplitude 1.5mm, f=10~55Hz, X,Y,Z	0⁄3
ž		directions for each 2 hours	
		Use ORTUS TECHNOLOGY original jig	0⁄3
		(see next page)and make an impact with	
	Impact test	peak acceleration of 1000m/s2 for 6 msec with	
		half sine-curve at 3 times to each X, Y, Z directions	
		in conformance with JIS 60068-2-27-2011	
st		Acceleration of 19.6m/s ² with frequency of	0∕1 Packing
g te	Packing vibration-proof test	$10 \rightarrow 55 \rightarrow 10$ Hz, X,Y, Zdirection for each	
kinç		30 minutes	
ac	Packing drop test	Drop from 75cm high.	0∕1 Packing
		1 time to each 6 surfaces, 3 edges, 1 corner	

Note:Ta=ambient temperature Tp=Panel temperature

%~ The profile of high temperature/humidity storage and High Temperature/humidity operation (Pure water of over 10MQ·cm shall be used.)

	Packing item name	Specs, Material
1	Tray	PP
2	Sealing bag	
3	Inner carton	Corrugated cardboard
4	inner board	Corrugated cardboard
5	Outet carton	Corrugated cardboard
6	Drier	Moisture absorber
\bigcirc	Packing tape	
8	Extra outer carton	Corrugated cardboard

- Step 1. Each product is to be placed in one of the cut-outs of the tray with the display surface facing upward.(10products per tray)
- Step 2. Each tray needs to be same orientation respect to the tray below or above it and the trays be in a stack of 10.One empty tray is to be put on the top of stack of 10 trays.
- Step 3. 2 packs of moisture absobers are to be placed on the top tray as shown in the drawing.Put piled trays into a sealing bag.Vacuum and seal the sealing bag with the vacuum sealing machine.
- Step 4. The stack of trays in the plastic back is to be inserted into a inner carton.
- Step 5. A corrugated board is to be placed on the top and on the bottom of the inner carton. The two corrugated boards and the inner carton is to be inserted into an outer carton.
- Step 6. The outer carton needs to sealed with packing tape as shown in the drawing.
 The model number, quantity of products, and shipping date are to be printed on the outer carton.
 If necessary, shipping labels or impression markings are to be put on the outer carton.
- Step 7. The outer carton is to be inserted into a extra outer carton with same direction.The extra outer carton needs to sealed with packing tape as shown in the drawing.
- Step 8. The model number, quantity of products, and shipping date are to be printed on the extra outer carton.If necessary, shipping labels or impression markings are to be put on the extra outer carton.

Dimension of Extra outer carton			
D : Approx.	(338mm)		
W : Approx.	(549mm)		
H : Approx.	(198mm)		
Quantity of products	10 pcs × 10 = 100 pcs		
packed in one carton			
Gross weight : Approx.	6.7kg		

Issue: Jun. 15, 2012

14. Handling Instruction

14.1 Cautions for Handling LCD panels

	Caution
(1)	Do not make an impact on the LCD panel glass because it may break and you may get injured from it.
(2)	If the glass breaks, do not touch it with bare hands. (Fragment of broken glass may stick you or you cut yourself on it.
(3)	If you get injured, receive adequate first aid and consult a medial doctor.
(4)	Do not let liquid crystal get into your mouth. (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.
(5)	If liquid crystal adheres, rinse it out thoroughly. (If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor.
(6)	If you scrap this products, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside.
(7)	Do not connect or disconnect this product while its application products is powered on.
(8)	Do not attempt to disassemble or modify this product as it is precision component.
(9)	If a part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please. Please insulate it with the insulating tape etc. if necessary. The defective operation is caused, and there is a possibility to generation of heat and the ignition.
(10)	Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnoramal operation is generated. We recommend you to add excess current protection circuit to power supply.
	Caution This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.

2012

Issue: Jun. 15,

14.2 Precautions for Handling

- Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean.
 Do not touch the surface of the monitor as it is easily scratched.
- Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge. Designate an appropriate operating area, and set equipment, tools, and machines properly when handling this product.
- Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.
- 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.
- 5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.
- Do not stain or damage the contacts of the FPC cable .
 FPC cable needs to be inserted until it can reach to the end of connector slot.
 During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion.
 Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable.
- 7) Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable.
- Peel off the protective film on the TFT monitors during mounting process. Refer to the section 14.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.

14.3 Precautions for Operation

- Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures.
- 2) When turning off the power, turn off the input signal before or at the same timing of switching off the power.
- Optimize VCOMDC within recommended operating conditions.
 * When VCOMDC is not an optimal value, flicker and image sticking will be occuerd.
- 4) Do not plug in or out the FPC cable while power supply is switch on. Plug the FPC cable in and out while power supply is switched off.
- 5) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.
- Do not display a fixed image on the screen for a long time.
 Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time.
 Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.

(51/53)

SPECIFICATIONS № 12TLM004

14.4 Storage Condition for Shipping Cartons

Storage environment

•	Temperature	0 to 40° C
•	Humidity	60%RH or less
		No-condensing occurs under low temperature with high humidity condition.
•	Atmosphere	No poisonous gas that can erode electronic components and/or wiring materials should be detected.
•	Time period	3 months
•	Unpacking	To prevent damages caused by static electricity, anti-static precautionary measures (e.g. earthing, anti-static mat) should be implemented.

Maximum piling up 7 cartons

14.5 Precautions for Peeling off the Protective film

The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films.

A) Work Environment

- a) Humidity: 50 to 70 %RH, Temperature15 to 27 °C
- b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Anti-static treatment should be implemented to work area's floor.
- c) Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt.

B) Work Method

- The following procedures should taken to prevent the driver ICs from charging and discharging.
- a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower left when FPC is placed at the bottom.
 Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower.
- b) Put an adhesive tape (Scotch tape, etc) at the lower left corner area of the protective film to prevent scratch on surface of TFT monitors.
- c) Peel off the adhesive tape slowly (spending more than 2 secs to complete) by pulling it to opposite direction.

(52/53)

APPENDIX

Reference Method for Measuring Optical Characteristics and Performance

. Measurement Condition						
Measuring instruments:	CS1000 (KONICA MINOLTA), LCD7000 (OTSUKA ELECTRONICS), EZcontrast160D (ELDIM)					
Driving condition:	Refer to the section "Optical Characteristics"					
Measured temperature:	25°C unless specified					
Measurement system:	See the chart below. The luminance meter is placed on the normal line of measurement system.					
Measurement point:	At the center of the screen unless otherwise specified					

Measurement is made after 30 minutes of lighting of the backlight.

Measurement point:

At the center point of the screen Brightness distribution: 9 points shown in the following drawing.

Dimensional ratio of active area

Backlight IL=20mA

2. Test Me	thod			
Notice	Item	Test method	Measuring	Remark
	_		instrument	
1	Response	Measure output signal waveform by the luminance	LCD7000	Black display
	time	meter when raster of window pattern is changed from		[Data]=00h
		white to black and from black to white.		White display
				[Data]=FFh
				ION
		White Black White		Rise time
				TOFF
				TOFF
		vvnite		Fall time
		100% —		
		90%		
		10%		
		0%		
		$ \longleftrightarrow $		
2	Contrast ratio	Measure maximum luminance Y1([Data]=FFh) and	CS1000	
		minimum luminance Y2([Data]=00h) at the center of		
		the screen by displaying raster or window pattern.		
		Then calculate the ratio between these two values.		
		Contrast ratio = Y1/Y2		
		Diameter of measuring point: 8mmq		
3	Viewing	Move the luminance meter from right to left and up	EZcontrast160D	
	angle	and down and determine the angles where		
	Horizontal0	contrast ratio is 10.		
	Verticalφ			
4	White	Measure chromaticity coordinates x and y of CIE1931	CS1000	
	chromaticity	colorimetric system at [Data] = FFh		
		Color matching faction: 2°view		
	Dura 1			
5	Burn-in	Visually check burn-in image on the screen		At optimized
6	Conter	Anter 2 nours of window display ([Data]=FFN/UUN).	001000	
0	Center	ineasure the brightness at the center of the screen.	CS1000	
7	Drightress	$\langle D_{\rm rightenance} distribution \rangle = 400 + D/A_0/$	001000	
	Brightness	(Brightness distribution) = 100 x B/A %	CS1000	
	aistribution	A : max. brightness of the 9 points		
		B : min. brightness of the 9 points		