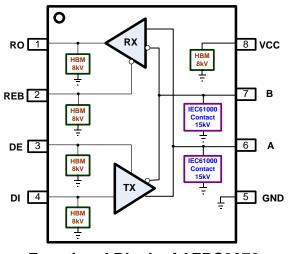


Features

- Meet the Requirements of the EIA/TIA-485 Standards with 3.3V Power Supply and Integrated <u>Transient Voltage Suppressor</u> (TVS)
- TVS Protection for Bus Terminals : ±15 kV IEC 61000-4-2, Contact Discharge ±18 kV IEC 61000-4-2, Air-Gap Discharge ±15 kV EIA/JEDEC Human Body Model
- HBM ±8kV ESD Protection for all pins
- MM ±800V ESD Protection for all pins
- Latchup immunity up to ±400mA for all pins.
- High CDM protection up to ±1kV for all pins..
- Enhanced Slew-Rate Limiting Facilitates Error-Free Data Transmission
- True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility
- Hot-Swap Glitch free Protection on Control Inputs
- Up to 256 Transceivers on the Bus

Applications

- Telecommunications Equipment
- Security System
- Industrial Control
- Building Automation Networks


Description

The AZRS3072 is a ± 15 kV IEC 61000-4-2 contact discharge protected half-duplex RS485 transceiver IC, which contains one transmitter and one receiver inside. This device is fully compliant with the EIA/TIA-485 standard with 3.3V power supply.

The AZRS3072 features a fail-safe receiver, which guarantees the output of the receiver to be logic high when the differential inputs of the receiver are open, short or idle conditions.

The AZRS3072 has a slew-rate-limited transmitter to minimize EMI and reflection caused by improperly cable terminated.

The AZRS3072 features a hot-swap glitch-free which guarantees outputs of the transmitter and the receiver in a high impedance state and even no short current event during the power up period. The AZRS3072 has the thermal shutdown and the current limited function in the transmitter to protect the device from damage by system fault condition during normal operating condition. The AZRS3072 is designed 1/8 unit load with minimum 96kohm of input impedance, which can connect 256 devices on a bus at least. The AZRS3072 is also a high reliable device with built-in system level ESD protected devices against high-energy noise transients without requiring any external components.

Functional Block of AZRS3072

Part Number	Duplex	Tx/Rx	Supply	Data Rate	Slew- Rate	Fail- Safe	HBM/MM	IEC 61000-4-2	Package
			(V)	(Kbps)			(V)	Contact (V)	Туре
AZRS3072	Half	1/1	3.3	250	Yes	Yes	8K/800	± 15k	SOP8

ABSOLUTE MAXIMUM RATINGS

PARAMETER	PARAMETER	RATING	UNITS
Power Supply Vcc	Vcc	-0.3 to 7.0	V
Control Input Voltage	REB, DE	-0.3 to (Vcc+ 0.3)	V
Receiver Input Voltage	A, B	±13	V
Receiver Output Voltage	RO	-0.3 to (Vcc+ 0.3)	V
Transmitter Output Voltage	A, B	±13	V
Transmitter Input	DI	-0.3 to (Vcc+ 0.3)	V
Operating Temperature	T _{OP}	-40 to +85	°C
Storage Temperature	Τ _{sto}	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS

(Vcc= $3.3V\pm5\%$ with T_{AMB}= T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at Vcc=3.3V and T_{AMB}= 25 °C.)

PARAMETER	SYMBOL	MBOL CONDITIONS		MIN	TYP	MAX	UNITS
Transmitter							
Differential Transmitter Output	V _{OD1}	No load				Vcc	V
Differential Transmitter Output	V _{OD2}	Fig.1, R _L = 27 Ω		1.5			V
Change in Magnitude of Differential Output Voltage	Δv_{od}	Fig.1, $R_L=27\Omega$				0.2	V
Transmitter Common- Mode Output Voltage	V _{oc}	Fig.1, R _L = 27 Ω				3	V
Change in Magnitude of Common- Mode Voltage	ΔV_{OC}	Fig.1, R _L = 27 Ω				0.2	V
Input High Voltage	V _{IH}	DE, DI, REB		2.0			V
Input Low Voltage	V _{IL}	DE, DI, REB				0.8	V
Input Current	I _{IN1}	DE, DI, REB				±2	μA
		DE=0, Vcc=0V	V _{IN} =12V			125	
Input Current for A and B	I _{IN2}	or 3.6V	V _{IN} =-7V	-100			μA
Transmitter Short-Circuit Output Current	I _{osd}	$-7V \leq V_{OUT} \leq 12V$		-250		250	mA

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
RECEIVER						
Receiver Differential Threshold Voltage	V _{TH}		-200		-50	mV
Receiver Output High Voltage	V _{OH}	Io= -1mA, VID= 200mV	Vcc-0.6			V
Receiver Output Low Voltage	V _{OL}	lo= 1mA, VID= -200mV			0.4	V
Three- State Output Current at Receiver	I _{OZR}	$0 \leq V_0 \leq Vcc$			±1	μA
Receiver Input Resistance	R _{IN}	$-7V \leq V_{CM} \leq +12V$	96			kΩ
Receiver Output Short-Circuit Current	I _{OSR}	Fig. 6, 0V \leq V _{RO} \leq Vcc			±80	mA
SUPPLY CURRENT						
		No load, REB=0, DE= Vcc		400	900	μA
Supply Current	lcc	No load, REB=Vcc, DE= Vcc		400	900	μA
		No load, REB=0, DE= 0		300	600	μA
Supply Current in Shutdown Mode	I _{SHDN}	REB=Vcc, DE= 0		1	10	μA
ESD PROTECTION						
		Human Body Model (HBM)		15		kV
ESD Protection for A and B		IEC 61000-4-2 Contact		15		kV
		IEC 61000-4-2 Air		18		kV

SWITCHING CHARACTERISTICS

(Vcc=3.3V \pm 5% with T_{AMB}= T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at Vcc=3.3V and T_{AMB}= 25 °C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Transmitter						
Transmitter Propagation Delay	t _{dplh,} t _{dphl}	Fig.2, Fig.7, R_{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF	300		1600	ns
Transmitter Output Skew $t_{DPLH} t_{DPLH}$	t _{DSKEW}	Fig.2, Fig.7, R _{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF			200	ns
Transmitter Rise or Fall Time	t _{DF} , t _{DR}	Fig.2, Fig.7, R _{DIFF} =54Ω, C _{L1} =C _{L2} = 100pF	350		1800	ns
Data Rate	f _{Data}				250	kbps

3

Revision 2016/05/06 ©2016 Amazing Micro.

						[]
Transmitter Enable to Output	t _{DZL}	Fig.4, Fig.8, C _{DL} = 50pF, S1			2500	ns
Low	•DZL	closed			2000	
Transmitter Enable to Output	t	Fig.4, Fig.8, C _{DL} = 50pF, S2			2500	ns
High	t _{DZH}	closed			2300	115
Transmitter Disable Time	+	Fig.4, Fig.8, C _{DL} = 50pF, S1			200	20
from Low	t _{DLZ}	closed			200	ns
Transmitter Disable Time		Fig.4, Fig.8, C _{DL} = 50pF, S2			200	
from High	t _{DHZ}	closed			200	ns
Transmitter Enable from		Fig.4, Fig.8, C _{DL} = 50pF, S1			5500	
Shutdown to Output Low	t _{DZL(SHDN)}	closed			5500	ns
Transmitter Enable from		Fig.4, Fig.8, C _{DL} = 50pF, S2			5500	
Shutdown to Output High	t _{DZH(SHDN)}	closed			5500	ns
Time to shutdown	t _{SHDN}		50	200	600	ns
Receiver						
		Fig.5, Fig.9, $ V_{ID} \ge 2.0$ V;				
Receiver Input to Output	t _{RPLH} , t _{RPHL}	rise and fall time of $V_{ID} \leq$			200	ns
		15ns				
$t_{RPLH} t_{RPH}$ Different		Fig.5, Fig.9, $ V_{ID} \ge 2.0$ V;				
Receiver Skew	t _{RSKD}	rise and fall time of $V_{ID} \leq$			30	ns
Data Rate	f _{Data}				250	kbps
Receiver Enable to Output		Fig.3, Fig.10, C _{RL} = 15pF, S1			100	
Low	t _{RZL}	closed			100	ns
Receiver Enable to Output		Fig.3, Fig.10, C _{RL} = 15pF, S2				
High	t _{RZH}	closed			100	ns
Receiver Disable Time from		Fig.3, Fig.10, C _{RL} = 15pF, S1			100	
Low	t _{RLZ}	closed			100	ns
Receiver Disable Time from		Fig.3, Fig.10, C _{RL} = 15pF, S2				
High	t _{RHZ}	closed			100	ns
Receiver Enable from		Fig.3, Fig.10, C _{RL} = 15pF, S1			4000	
Shutdown to Output Low	t _{RZL(SHDN)}	closed			4000	ns
Receiver Enable from		Fig.3, Fig.10, C _{RL} = 15pF, S2			4000	
Shutdown to Output High	t _{RZH(SHDN)}	closed			4000	ns
Time to shutdown	t _{SHDN}		50	200	600	ns

PIN FUNCTION DESCRIPTION

Pin Number	Mnemonic	Function
1	RO	Receiver Output: When REB is low and if $(A - B) \ge -50 \text{mV}$,
		RO is high; if (A - B) \leq -200mV, RO is low.
2	REB	Receiver Output Enable: REB is low to enable the Receiver; REB
		is high to disable the Receiver.
3	DE	Transmitter Output Enable: DE is high to enable the transmitter;
		DE is low to disable the transceiver.
4	DI	Transmitter Input: When DE is high, a low on DI forces A output
		low and B output high. Similarly, a high on DI forces A output high
		and B output low.
5	GND	Ground.
6	А	Non-inverting Receiver Input and Non-inverting Transmitter
		Output.
7	В	Inverting Receiver Input and Inverting Transmitter Output.
8	VCC	Power Supply Input 3.3V.

FUNCTION TABLE

TRANSMITTING								
	INPUTS	OUTPUTS						
REB	DE	DI	A	В				
Х	1	0	0	1				
Х	1	1	1	0				
0	0	Х	High- Z	High- Z				
1	0	Х	Shutdown					

X= Don't care HIGH- Z= High impedance

RECEIVING							
	INPUTS		OUTPUTS				
REB	DE	A – B	RO				
0	Х	\geq -0.05 V	1				
0	Х	≤ -0.2 V	0				
0	Х	Open/Shorted	1				
1	1	Х	High- Z				
1	0	Х	Shutdown				

X= Don't care HIGH- Z= High impedance

Detail Description

The AZRS3072 is a half-duplex RS-485 transceiver IC with IEC61000-4-2 contact \pm 15kV ESD protection for bus pins (A and B), which contains one transmitter and one receiver inside with 3.3V power supply. This device is fully compliant with the EIA/TIA-485 standard.

The AZRS3072 features the hot-swap glitch free design which guarantees the outputs of the transceiver in a high impedance state during the power-up period until the supply voltage has stabilized.

The AZRS3072 with whole chip ESD protected design for all of the I/O pins has robust ESD protection up to both HBM \pm 8kV and MM \pm 800V. Moreover, the latchup immunity of the AZRS3072 is up to \pm 400mA for all of the pins. For IC self discharge issue, the CDM protection level of the AZRS3072 is up to \pm 1kV.

Transmitter

The design of the transmitter is a non-inverted translator that converts the single-ended TTL input signal to differential EIA/TIA-485 signal level. The transmitter of the AZRS3072 has a slew-rate-limited driver to minimize EMI and reflection caused by improperly cable terminated. When the transmitter is active (DE= HIGH), the single-end TTL input signals of transmitter will be transported to differential output RS485 signals of the transmitter. Under the disable state (DE= LOW), the outputs of transmitter keep at high impedance state. The differential output voltage (VA-VB) of the AZRS3072 is at least 1.5V with 54 ohm load under T= 25° C.

Receiver

The receiver of the AZRS3072 converts the differential EIA/TIA-485 signals to single-end output TTL signal when receiver is in active state (REB=LOW) When the receiver is disable

(REB=HIGH), the output of the receiver keeps in high impedance state no matter what receiver input.

True Fail-Safe

In traditional design, the fail-safe function is implemented by resistors on the PCB. One resistor is terminated pin A to VCC; the other is terminated pin B to GND to keep RO at high state when bus is idle, which is only the open fail-safe. The AZRS3072 guarantees a receiver output high when the receiver inputs are short, open or idle, that is true fail-safe. The threshold voltage of receiver input is between -50mV and -200mV. If the differential input voltage (A - B) of receiver is greater than or equal to -50mV, receiver output (RO) is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage (A - B) is 0V, so the RO is logic-high at that time.

1/8 Unit Load

The RS-485 standard defines both receiver inputs impedance are $12k\Omega$ (1 unit load) and the maximum 32-unit loads on the bus. The AZRS3072 transceiver has a $96k\Omega$ input impedance (1/8 unit load) of the receiver, allowing up to 256 or fewer devices to be connected in parallel on the RS485 bus.

Transmitter Output Protection

The AZRS3072 has the current limitation function and the thermal shutdown protection in the transmitter. Firstly, the function of current limitation provides immediate protection against short circuits over the whole common-mode voltage range (-7V to +12V). Secondly, the function of thermal shutdown protection forces the transmitter outputs into a high impedance state if the die temperature becomes excessive.

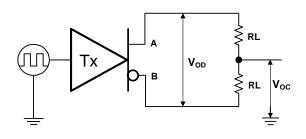


Fig.1 Transmitter DC test circuit

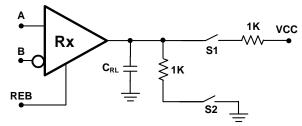


Fig.3 Receiver enable/disable timing test load

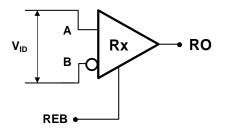


Fig.5 Receiver timing test circuit

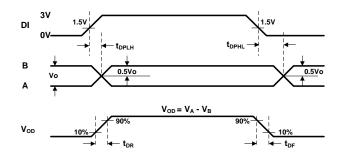


Fig.7 Transmitter Propagation Delays

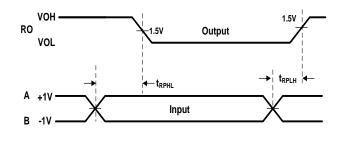


Fig.9 Receiver Propagation Delays

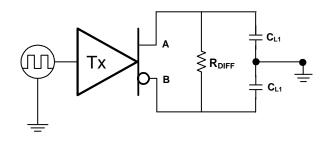


Fig.2 Transmitter timing test circuit

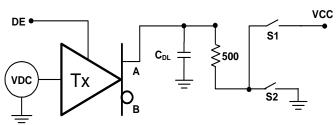
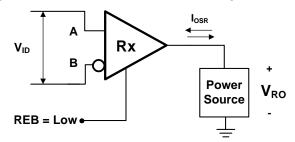
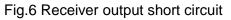
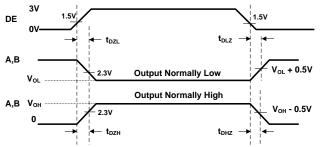
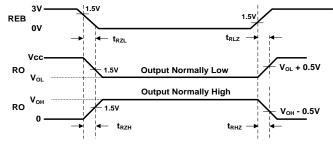
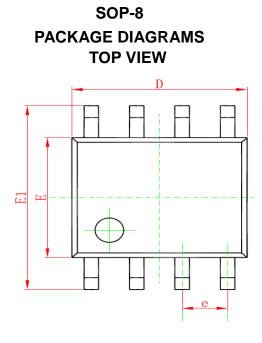
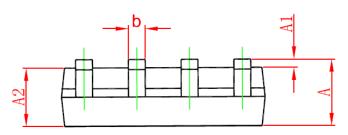
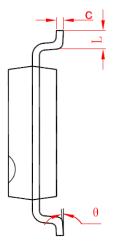




Fig.4 Transmitter enable/disable timing test load

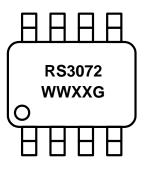




Fig.8 Transmitter Enable and Disable Times


Fig.10 Receiver Enable and Disable Times


Mechanical Details

SIDE VIEW


END VIEW

PACKAGE DIMENSIONS

Symbol	Millim	eters	Inc	hes
Symbol	min	max	min	max
А	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.35	1.55	0.053	0.061
b	0.33	0.51	0.013	0.020
С	0.17	0.26	0.007	0.010
D	4.70	5.10	0.185	0.201
E	3.70	4.10	0.146	0.161
E1	5.80	6.20	0.228	0.244
е	1.27 BSC		0.05	BSC
L	0.40	1.27	0.016	0.050
Θ	0	8	0	8

MARKING CODE

RS3072 = Device Code

WW = Date Code

XX = Control Code

G = Green Part Indication

Part Number	Marking Code
AZRS3072	RS3072
	WWXXG

Ordering Information

PN#	Material	Туре	Reel size	MOQ/interal box	MOQ/carton
AZRS3072.RDG	Green	T/R	13 inch	1 reel=2,500/box	5 box=12,500/carton

Revision History

Revision	Modification Description
Revision 2015/07/07	Formal Release.
Revision 2015/07/29	Delete L1 and Add Θ parameters in Package Dimensions Table
Revision 2016/05/06	Modified the indication of Marking code.