

2-channel Gate Driver w/ LDO

FEATURES

- •Output Peak Current ±1A (peak)
- •Operating Voltage Range 4V to 20V
- •Fast Switching

tr/tf=15ns/15ns(typ.) at CL=1,000pF

- •Corresponding with Logic Voltage Operation: 3V/5V
- •LDO Output Capability 5V / 50mA
- •Thermal Shutdown
- •Under Voltage Lockout (UVLO)

Package Outline

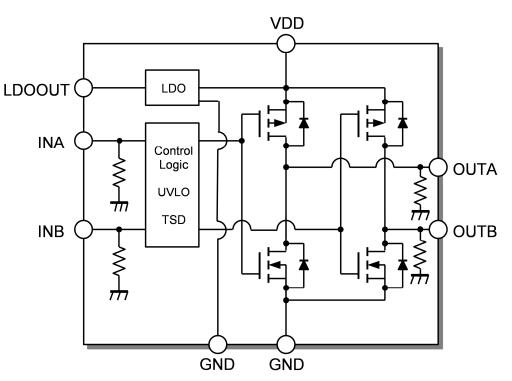
ut (UVLO)

ne HSOP8, DFN8-V1

■GENERAL DESCRIPTION

The NJW4860 is 2 channels Gate driver that peak current is 1A.

Also NJW4860 is integrated 5V/50mA LDO.

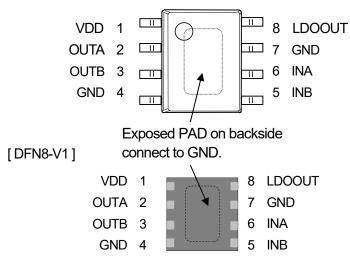

The NJW4860 other features are Withstand voltage of 45V, recommended operating voltage range: 4V to 20V and Fast switching time.

The NJW4860 is suitable for digital control applications.

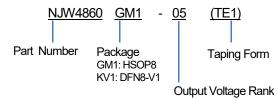
■APPLICATION

- Industrial Equipment
- LED Lighting
- Other

BLOCK DIAGRAM



New Japan Radio Co., Ltd.


■PIN CONFIGURATION

[HSOP8]

PIN NO.	SYMBOL	FUNCTION
1	VDD	Power Supply pin
2	OUTA	A channel Gate Driver Output pin
3	OUTB	B channel Gate Driver Output pin
4	GND	GND pin
5	INB	B channel Gate Driver Input pin
6	INA	A channel Gate Driver Input pin
7	GND	GND pin
8	LDOOUT	LDO Output pin

■PRODUCT NAME INFORMATION

■ORDERING INFORMATION

PART NUMBER	output Voltage Rank	PACKAGE OUTLINE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ(pcs)
NJW4860GM1-05(TE1)	5.0V	HSOP8	yes	yes	Sn100%	486050	81	3,000
NJW4860KV1-05(TE3)	5.0V	DFN8-V1	yes	yes	Sn2Bi	486050	7.2	3,000

New Japan Radio Co., Ltd.

■ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL		MAXIMUM RATINGS	UNIT	REMARK
Supply Voltage	V _{DD}		+45	V	VDD-GND pin
Input Voltage		V _{IN}	–0.3 to +6	V	INA/B-GND pin
		HSOP8	790 (1)		_
Power Dissipation (Ta-25°C)	D		2,500 (2)	mW	
Power Dissipation(Ta=25°C)	P _D	DFN8-V1	600 (3)		
			1,800 (4)		
Junction Temperature Range Tj		-40 to +150	°C	-	
Operating Voltage Range T _{opr}		-40 to +125	°C	_	
Storage Temperature Range T _{stg}		-50 to +150	°C	_	

(1): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JDEC standard, 2Layers)

(2): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JDEC standard, 4Layers),

internal Cu area: 74.2×74.2mm

(3): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 2Layers FR-4, with Exposed Pad)

(4): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 4Layers FR-4, with Exposed Pad)

(For 4Layers: Applying 99.5 99.5mm inner Cu area and thermal via holes to a board based on JEDEC standard JESD51-5)

■RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT	REMARK
Supply Voltage (*5)	V _{DD}	4 to 20	V	VDD-GND pin
Input Voltage	V _{IN}	0 to 5.5	V	INA/B-GND pin

(5): When LDO is used, the minimum recommended operating voltage is 6V.

Also, it should be pay attention to the input voltage value so as not to exceed the package power dissipation.

New Japan Radio Co., Ltd.

■ELECTRICAL CHARACTERISTICS		(Unless otherwise noted, V_{DD} =15V, C_{IN} =1µF, C_{O} =1µ			C _O =1μF、	Ta=25°C)
PARAMETER SYMBOL		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
General	÷	·	-			
Quiescent Current	I _{Q1}	V _{IN} =5V	-	2.5	4.0	mA
	I _{Q2}	V _{IN} =0V	-	2.1	3.6	mA
Gate Driver Output Block	-	-	-		-	
Output Peak Current	I _{PK1}	Pulse Width ≤10µs, V _{OUT} =0V	-	1	-	А
	I _{PK2}	Pulse Width $\leq 10 \mu s$, V _{OUT} =15V	-	1	-	А
Output ON Resistance	R _{DSH}	I _{O-SOURCE} =100mA	-	4.0	7.0	Ω
	R _{DSL}	I _{O-SINK} =100mA	-	3.3	6.0	Ω
Output Pulldown Resistance	R _{OUTPD}		60	100	140	kΩ
Gate Driver Input Block						
IN pin High Voltage	V _{IHIN}		2.0	-	5.5	V
IN pin Low Voltage	V _{ILIN}		0	-	0.8	V
Input Pulldown Resistance	RINPD		60	100	140	kΩ
UVLO Block						
UVLO Release Voltage	V _{UVLO2}		2.8	3.3	3.8	V
UVLO Operating Voltage	V _{UVLO1}		2.5	3.0	3.5	V
UVLO Hysteresis Voltage	ΔV_{UVLO}	V _{UVLO2} – V _{UVLO1}	-	0.3	-	V
Output Rise/Fall characteristics	5		-	-	-	-
Output Rise Time	tr	C _L =1,000pF, V _{IN} =0 to 5V	_	15	_	ns
Output Fall Time	tf	C _L =1,000pF, V _{IN} =5 to 0V	_	15	_	ns
Rise Delay Time	t _{d_ON}	C _L =1,000pF, V _{IN} =0 to 5V	_	40	_	ns
Fall Delay Time	$t_{d_{OFF}}$	C_L =1,000pF, V_{IN} =5 to 0V	-	45	-	ns
LDO Block	-			-		
Output Voltage	Vo	I _O =10mA	-1.0%	_	+1.0%	V
Output Current	lo		0	_	50	mA
Line Regulation	$\Delta V_{O} / \Delta V_{DD}$	V_{DD} =6V to 20V, I _O =10mA	-	_	0.03	%/V
Load Regulation	$\Delta V_0 / \Delta I_0$	I _o =0mA to 50mA	-	-	0.01	%/mA
Ripple Rejection	RR	V _{DD} = 6V ,ein=200mVrms, f=1kHz, I _O =10mA	_	60	_	dB
Dropout Voltage	ΔV_{DD}	I ₀ =10mA	-	0.03	0.1	V
Average Temperature Coefficient of Output Voltage	∆V ₀ /∆Ta	Ta=-40°C to +125°C, I ₀ =10mA	_	±50	_	ppm/°C

- New Japan Radio Co., Ltd. -

THERMAL CHARACTERISTICS

PARAMETER	SYMBOL		UNIT	
			158 (6)	°C W
Junction-to-ambient	θја	HSOP8	50 (7)	
thermal resistance		DFN8-V1	208 (8)	
			68 (9)	
	ψjt	HSOP8	28 (6)	
Junction-to-ambient thermal resistance			12 (7)	°C W
		DFN8-V1	15 (8)	C/W
			7 (9)	

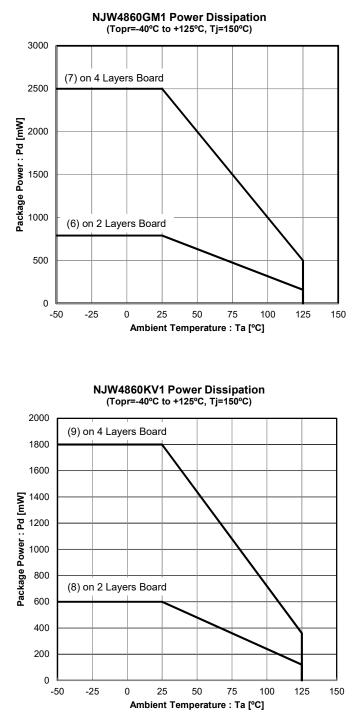
(1): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JDEC standard, 2Layers)

(2): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JDEC standard, 4Layers),

internal Cu area: 74.2×74.2mm

(3): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 2Layers FR-4, with Exposed Pad)

(4): Mounted on glass epoxy board. (101.5 114.5 1.6mm: based on EIA/JEDEC standard, 4Layers FR-4, with Exposed Pad)


(For 4Layers: Applying 99.5 99.5mm inner Cu area and thermal via holes to a board based

on JEDEC standard JESD51-5)

New Japan Radio Co., Ltd.

■POWER DISSIPATION vs. AMBIENT TEMPERATURE

New Japan Radio Co., Ltd. www.njr.com/

TIMING CHART

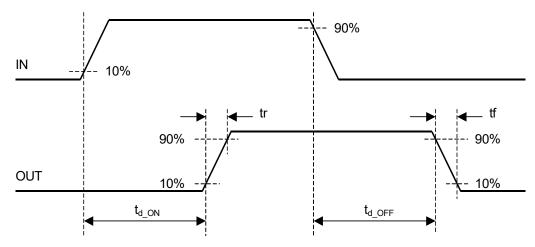
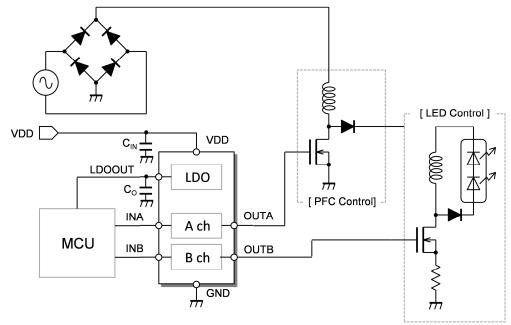



Fig1. Output Rise/Fall Time, Rise/Fall Delay Time

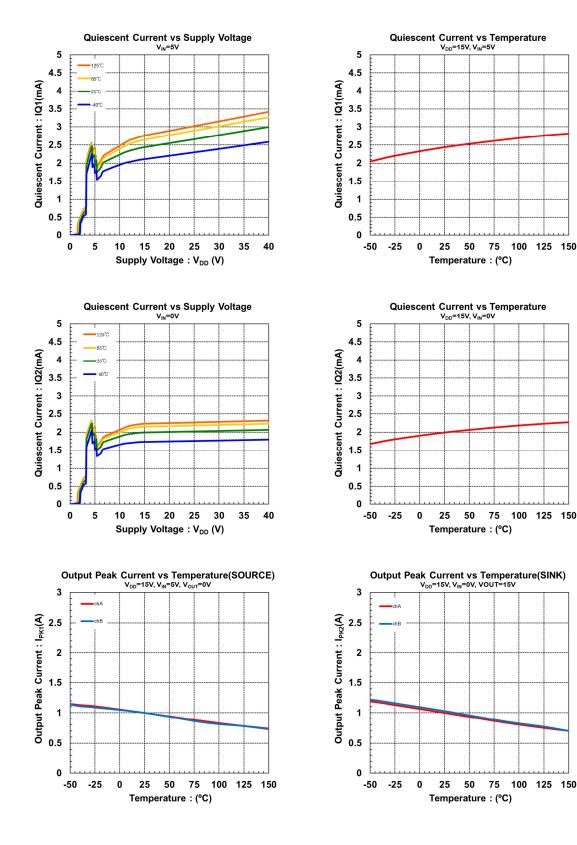
New Japan Radio Co., Ltd.

TYPICAL APPLICATION

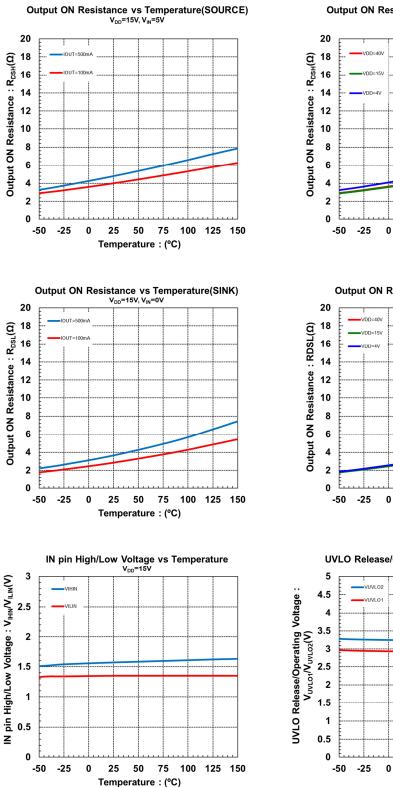
In the application that does a high-speed switching of NJW4860, because the current flow corresponds to the output rise and fall, the substrate (PCB) layout becomes an important. NJW4860 is driving the MOSFET with high speed to reduce switching losses. The transient voltage is generated by parasitic inductance and a high-speed current change of MOSFET. It should be attempt the transition voltage decrease by making a current loop area minimize as much as possible. Therefore, it should make a current flowing line thick and short as much as possible. It should insert a bypass capacitor between VDD pin and GND pin to prevent malfunction by generating over voltage and/or exceed maximum input voltage rating. The recommended bypass capacitor is low ESR and high frequency characteristic (NJRC recommends 1µF or more). An aluminum electrolysis capacitor by sufficient evaluation (assessment) due to load condition and/or application use environment. The bypass capacitors should be connected as much as possible near VDD pin.

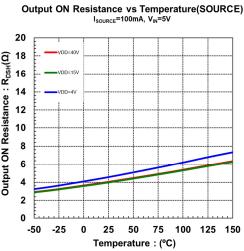
Also, the output capacitor C_0 is required for a phase compensation of the internal LDO's error amplifier, and the capacitance and the equivalent series resistance (ESR) influence stable operation of the regulator. If use a smaller output capacitor than the recommended capacitance (refer to conditions of ELECTRIC CHARACTERISTIC), it may cause excess output noise or oscillation of the regulator due to lack of the phase compensation. Therefore, the recommended capacitance or larger output capacitor, connected between LDOOUT and GND as short path as possible, is recommended for stable operation.

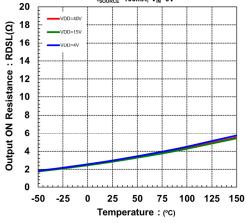
Furthermore, a larger output capacitor reduces output noise and ripple output, and also improves Output Transient Response when a load changes rapidly.


Selecting the output capacitor, should consider varied characteristics of a capacitor: frequency characteristics, temperature characteristics, DC bias characteristics and so on. Therefore, the capacitor that has a sufficient margin of the rated voltage against the output voltage and superior temperature characteristics is recommended for C_0 .

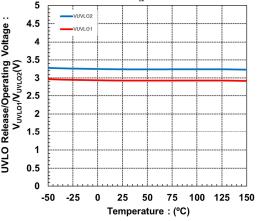
New Japan Radio Co., Ltd.


75 100 125 150


■TYPICAL CHARACTERISTICS


New Japan Radio Co., Ltd.

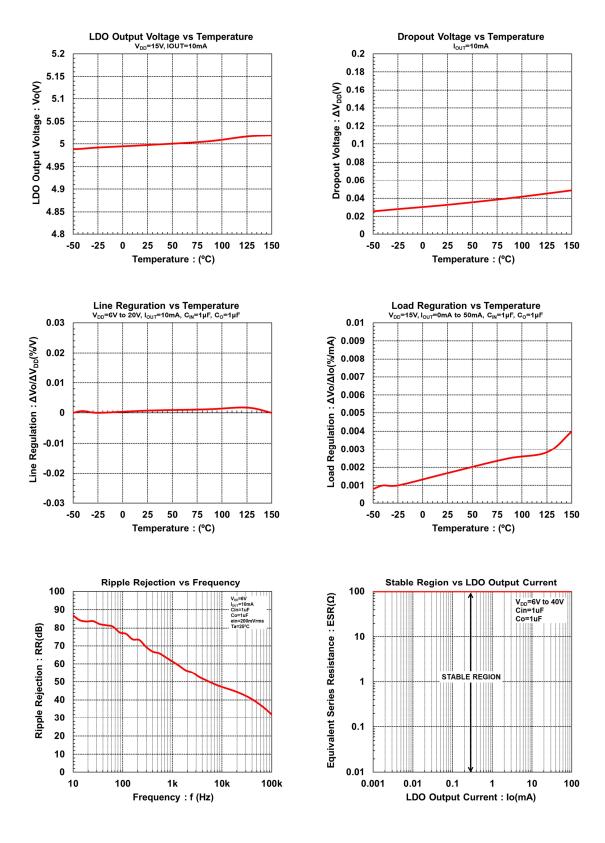
TYPICAL CHARACTERISTICS



Output ON Resistance vs Temperature(SINK) I_{SOURCE} =100mA, V_{IN} =0V

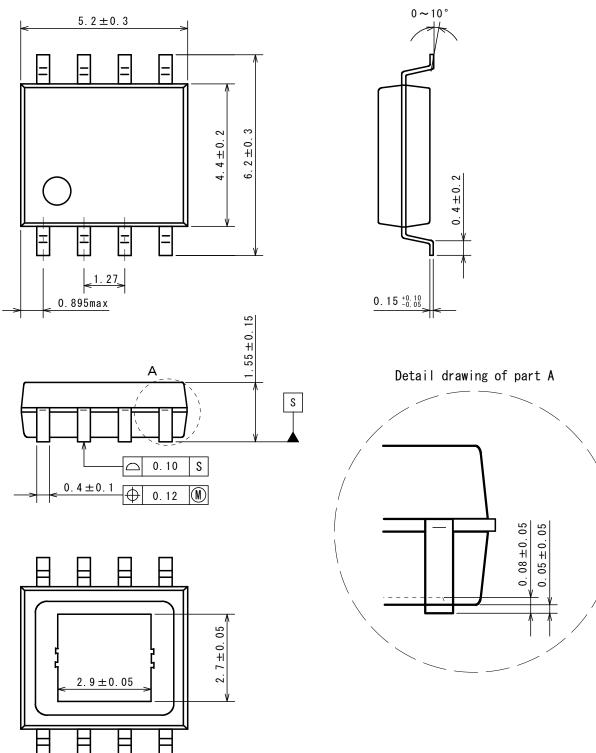
UVLO Release/Operating Voltage vs Temperature $V_{N=5V}$

New Japan Radio Co., Ltd.


TYPICAL CHARACTERISTICS

New Japan Radio Co., Ltd.

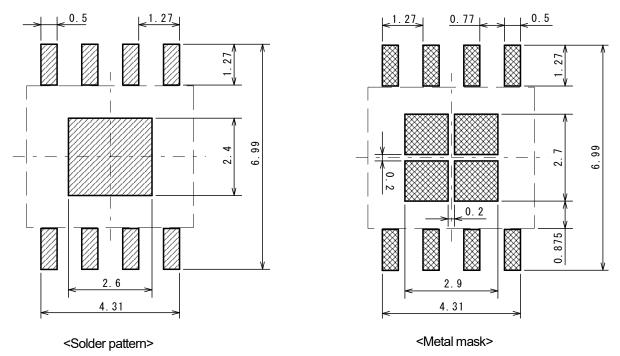
TYPICAL CHARACTERISTICS



New Japan Radio Co., Ltd.

HSOP8 Unit: mm

■PACKAGE DIMENSIONS



New Japan Radio Co., Ltd.

HSOP8 Unit: mm

■EXAMPLE OF SOLDER PADS DIMENSIONS

<Instructions for mounting>

Please note the following points when you mount HSOP-8 package IC because there is a standoff on the backside electrode.

(1) Temperature profile of lead and backside electrode.

It is necessary that both re-flow temperature profile of lead and backside electrode are higher than preset temperature. When solder wet temperature is lower than lead/backside electrode temperature, there is possibility of defect mounting.

(2) Design of foot pattern / metal mask

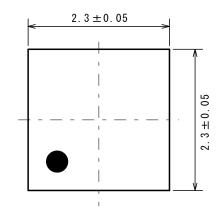
Metal mask thickness of solder pattern print is more than 0.13mm.

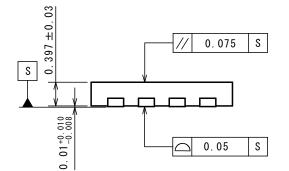
(3) Solder paste

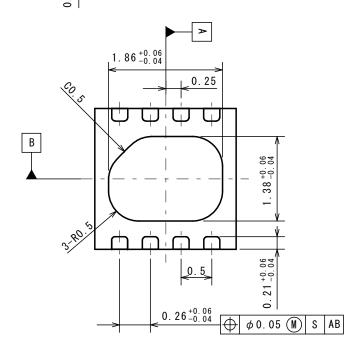
The mounting was evaluated with following solder paste, foot pattern and metal mask.

Because mounting might be greatly different according to the manufacturer and the product number even if the solder composition is the same.

We will strongly recommend to evaluate mounting previously with using foot pattern, metal mask and solder paste.


Solder paste composition	Sn37Pb (Senju Metal Industry Co., Ltd:OZ7053-340F-C)
Solder paste composition	Sn3Ag0.5Cu (Senju Metal Industry Co., Ltd:M705-GRN350-32-11)


New Japan Radio Co., Ltd.

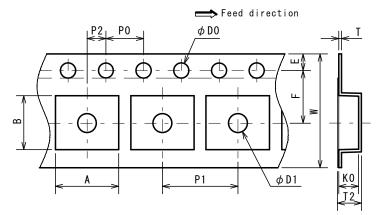


DFN8-V1

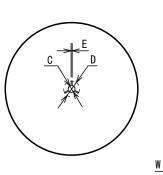
■PACKAGE DIMENSIONS

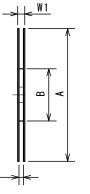
New Japan Radio Co., Ltd.

■EXAMPLE OF SOLDER PADS DIMENSIONS



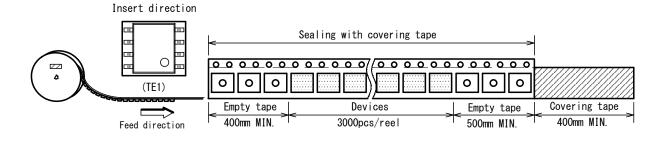
HSOP8

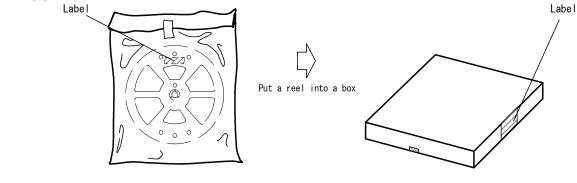

Unit: mm


■PACKING SPEC

TAPING DIMENSIONS

REEL DIMENSIONS

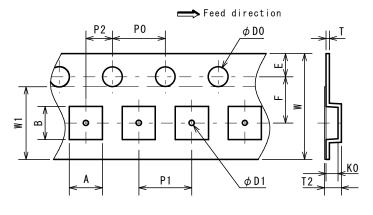



SYMBOL	DIMENSION	REMARKS
A	6.7±0.1	
В	5.55±0.1	
DO	1.55±0.05	
D1	2.05±0.05	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.05	
Т	0.3±0.05	
T2	2. 47	
KO	2.1±0.1	
W	12.0±0.2	

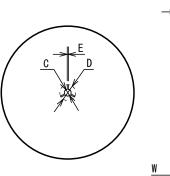
DIMENSION b330±2
$b330\pm 2$
b 80±1
b 13±0.2
b 21±0.8
2±0.5
13.5±0.5
17.5±1

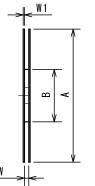
TAPING STATE

PACKING STATE


New Japan Radio Co., Ltd.

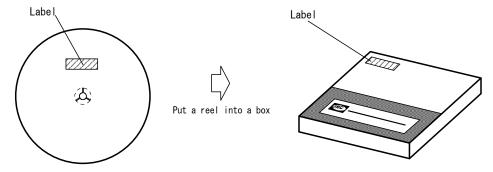
DFN8-V1


■PACKING SPEC


TAPING DIMENSIONS

SYMBOL	DIMENSION	REMARKS
Α	2.55±0.05	BOTTOM DIMENSION
В	2.55±0.05	BOTTOM DIMENSION
DO	1.5 ^{+0.1}	
D1	0.5±0.1	
E	1.75±0.1	
F	3.5±0.05	
PO	4.0±0.1	
P1	4.0±0.1	
P2	2.0±0.05	
Т	0.25±0.05	
T2	1.00±0.07	
KO	0.65±0.05	
W	8.0±0.2	
W1	5.5	THICKNESS 0. 1max

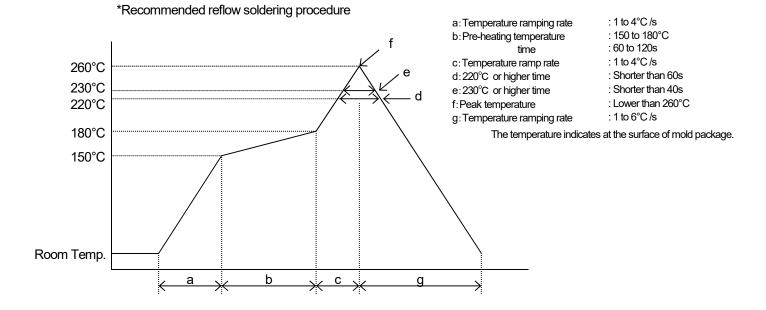
REEL DIMENSIONS



SYMBOL	DIMENSION		
Α	φ180 ⁰ _{-1.5}		
В	ϕ 60 $^{+1}_{0}$		
С	φ 13±0.2		
D	φ 21±0.8		
E	2±0.5		
W	9 ^{+0.3}		
W1	1.2		

TAPING STATE

PACKING STATE



New Japan Radio Co., Ltd.

■RECOMMENDED MOUNTING METHOD

·INFRARED REFLOW SOLDERING METHOD

New Japan Radio Co., Ltd.

REVISION HYSTORY

Date	Revision	Changes
15.Feb.2018	Ver.1	New Release
20.Jul.2018 Ver.1.1		Corrected of ABSOLUTE MAXIMUM RATINGS (Power Dissipation) and
20.301.2010	vel. I. I	ORDERING INFORMATION (MARKING)

- New Japan Radio Co.,Ltd. —

[CAUTION]

- 1. New JRC strives to produce reliable and high quality semiconductors. New JRC's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of New JRC's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. All other trademarks mentioned herein are property of their respective companies.
- 3. To ensure the highest levels of reliability, New JRC products must always be properly handled. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- 4. New JRC offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact New JRC's Sale's Office if you are uncertain about the products listed in this catalog.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in the catalog may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.

Aerospace Equipment Equipment Used in the Deep Sea Power Generator Control Equipment (Nuclear, Steam, Hydraulic) Life Maintenance Medical Equipment Fire Alarm/Intruder Detector Vehicle Control Equipment (airplane, railroad, ship, etc.) Various Safety devices

- 7. New JRC's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this catalog. Failure to employ New JRC products in the proper applications can lead to deterioration, destruction or failure of the products. New JRC shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of its products. Products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic(GaAs) Products (Applying to GaAs MMIC, Photo Reflector). This Products uses Gallium(Ga) and Arsenic(As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this catalog are subject to change at any time, without notice.

New Japan Radio Co., Ltd.

www.njr.com/

Ver 1 1

- 20 -