

10MHz, Low noise, Excellent EMI Immunity, Rail-to-rail I/O, Operational Amplifiers

■ FEATURES (V+ = 5V, Typical value)

Wide Gain Bandwidth
 Low Noise
 10MHz
 8nV/√Hz (f = 10kHz)

Enhanced C-Drive ™

- 1000pF High Capacitive Load Drive

- Maintains GBW 10MHz under High Capacitive Load

Input Offset Voltage Drift

0.7µV/°C

• Integrated EMI filter EMIRR = TBDdB (f = 1.8GHz)

Input Tolerant

High Slew Rate
 5V/µs

• Rail-to-Rail Input and Output

Unity-Gain stable

Supply VoltageInput Offset Voltage4mV max.

Input Bias Current
 1pA

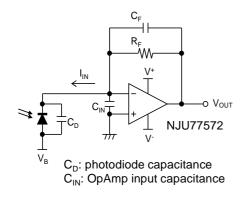
Supply CurrentPackagesMSOP8 (VSP8)

■ APPLICATIONS

- Sensor Signal Conditioning
- High-Speed Cable Drivers
- Multi-Pole Active Filters
- Security
- Scanners
- Photodiode Amplifier
- ADC front ends

■ DESCRIPTION

The NJU77572 is a dual rail-to-rail input and output single supply OpAmp featuring wide bandwidth and low noise. The combination of very low noise (8nV \sqrt{Hz} at 10kHz), high-gain bandwidth (10MHz), and fast slew rate (5V/ μ s) make the devices ideal for a wide variety of applications, including signal conditioning and sensor amplification requiring high gains.


Low input bias current, low noise and low offset voltage drift of $0.7\mu\text{V}/^{\circ}\text{C}$ performances are also excellent for filters, integrators, photodiode amplifiers, and high impedance sensors. The ability of rail-to-rail input and output enables the designers to buffer ADC, DAC, and other wide output swing devices in single-supply systems.

The Enhanced C-Drive TM of NJU77572 can directly drive a 1000pF capacitive load, and can output an AC signal with little distortion even with a large capacitive load by suppressing the decrease in GBW. This feature is ideal for high-speed signal cable drivers and high-speed active filter circuits that are sensitive to wiring capacitance.

NJU77572 includes integrated EMI filter to reduce malfunctions caused by RF noises from mobile phones and other wireless devices. And the input tolerant that allows the input voltage (Recommended: V+5.5V) that exceed positive supply voltage is ideal for design for robust industrial applications.


NJU77572 operates from supply range of 2.7V to 5.5V over the -55°C to 125°C extended industrial temperature range. The NJU77572 is available in 8-pin SOP8, MSOP (VSP): meet JEDEC MO-187-DA type package.

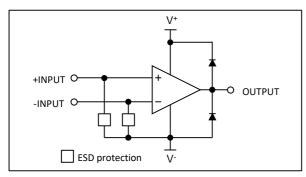
■ TYPICAL APPLICATION

Transimpedance amplifier

1000pF Capacitive Load Drive

■ PIN CONFIGURATION

PRODUCT NAME	NJU77572R			
Package	MSOP8 (VSP8)			
Pin Functions	(Top View) A OUTPUT 1			

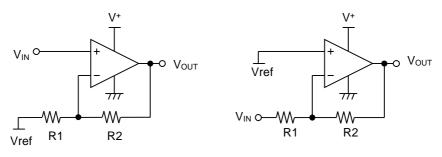

■ PRODUCT NAME INFORMATION

■ ORDERING INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs)
NJU77572R (TE1)	MSOP8 (VSP8)	Yes	Yes	Sn2Bi	77572	21	2000

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS


PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V+ - V-	7	V
Input Voltage (1)	VIN	$V^ 0.3$ to $V^- + 7$	V
Input Current (1)	lin	10	mA
Output Terminal Input Voltage (2)	Vo	$V^ 0.3$ to $V^+ + 0.3$	V
Differential Input Voltage (3)	V _{ID}	±7	V
Output Short-Circuit Duration (4)		Continuous	
Power Dissipation (T _a = 25°C)	Pp	2-Layer / 4-Layer (5)	
MSOP8 (VSP8)	PD	500 / 660	mW
Storage Temperature	T _{stg}	-65 to 150	°C
Junction Temperature	Tj	150	°C

- (1) Input voltages below the negative supply voltage will be clamped by ESD protection diodes. If the input voltage lower than $V^- 0.3V$, the current must be limited 10 mA or less by using a restriction resistance.
- The output terminal input voltage is limited at 7V.
- (3) Differential voltage is the voltage difference between +INPUT and -INPUT.
- (4) Short-circuit can cause excessive heating and destructive dissipation.
- (5) 2-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-Layer FR-4). 4-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 4-Layer FR-4), internal Cu area: 74.2 mm × 74.2 mm.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBO L	CONDITIONS	VALUE	UNIT
Supply Voltage	V+ - V-		2.7 to 5.5	V
Input Voltage	VIN	Closed-Loop	$V^ 0.3$ to $V^- + 5.5$	V
Operating Temperature	Topr		-55 to 125	°C

■ TYPICAL APPLICATIONS

Non-inverting amplifier

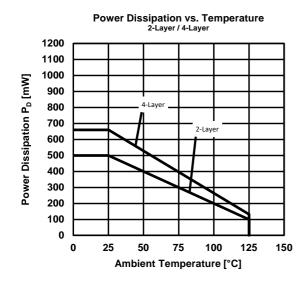
Inverting amplifier

■ ELECTRICAL CHARACTERISTICS

(V+ = 2.7V to 5.5V, V- = 0V, R_L = 10k Ω to V+ / 2, T_a = 25°C, unless otherwise noted.)

(V = 2.7 V tO 3.3 V, V = 0 V, INL =		/ Z, Ta = 25 C, utiless of letwise II	oled.)					
PARAMETER	SYMBO L	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
INPUT CHARACTERISTICS								
Input Offset Voltage	Vio	V _{COM} = V ⁻	-	0.6	4	mV		
Input Bias Current	lΒ		-	1	-	рА		
Input Offset Current	I _{IO}		-	1	-	рА		
Input Offset Voltage Drift	ΔV _Ю /ΔΤ	V _{COM} = 0V	-	0.7	-	μV/°C		
Input Resistance	Rıc		-	TBD	-	GΩ		
Input Capacitance	C _{IN}		-	TBD	-	pF		
Open-Loop Voltage Gain	Av	$V^{+} = 5.5V$, $R_{L} = 10k\Omega$, $V_{O} = V^{-} - 0.3V$ to $V^{+} - 0.3V$	80	100	-	dB		
Common Made Poinction Potio	CMR	$V^+ = 5.5V$, $V_{COM} = V^ 0.2V$ to $V^+ - 2V$	65	85	-	dB		
Common-Mode Rejection Ratio	CIVIK	$V^{+} = 5.5V,$ $V_{COM} = V^{-} - 0.2V$ to $V^{+} + 0.2V$ (7)	55	75	-	dB		
Common-Mode Input Voltage Range	V _{ICM}	Guaranteed by CMR	V ⁻ - 0.2	-	V+ + 0.2 (7)	V		
OUTPUT CHARACTERISTICS								
High-level Output Voltage	V _{ОН}	$V^{+} = 5.5V$, $R_{L} = 10k\Omega$ to $V^{+}/2$	-	V+ - 0.005	V+ - 0.050	V		
nigri-ievei Output voitage		$V^{+} = 2.7V$, $R_{L} = 10k\Omega$ to $V^{+}/2$	-	V+ - 0.002	V+ - 0.050	V		
Low-level Output Voltage	Vol	$V^{+} = 5.5V$, $R_{L} = 10k\Omega$ to $V^{+}/2$	-	7	50	mV		
		$V^{+} = 2.7V$, $R_{L} = 10k\Omega$ to $V^{+}/2$	-	2	50	mV		
Capacitive Load Drive	CL		-	1000	-	pF		
Output Impedance	Zo	$V^{+} = 5V, f = 1MHz$	-	TBD	-	Ω		
Output Short-Circuit Current	Isc	V+ = 5V, Source / Sink	-	TBD	-	mA		
POWER SUPPLY								
Supply Current per Amplifier	louppuy	$V^{+} = 5V, V_{COM} = 0V, V^{+}$	-	1.10	2.10	mA		
Supply Current per Amplifier	ISUPPLY	$V^+ = 2.7V, V_{COM} = 0V, V^+$	-	0.95	1.90	mA		
Supply Voltage Rejection Ratio	SVR	$V^+ = 2.7 \text{ to } 5.5 \text{V}, V_{COM} = 0 \text{V}, V^+$	65	85	-	dB		
AC CHARACTERISTICS ($V^+ = 5V$, 2)	$V_{COM} = V^+ /$							
Slew Rate	SR	C _L = 50pF, V _{IN} = 4V _{PP} , Gain = 1	-	5	-	V/µs		
Gain Bandwidth Product	GBW	C _L = 50pF	-	10	-	MHz		
Settling Time 0.1%	ts	C _L = 50pF, V _{IN} = 4V _{PP} , Gain = 1	-	TBD	-	μs		
		C _L = 10pF	-	60	-	Deg		
Phase Margin	Фм	C _L = 50pF	-	45	-	Deg		
Total Harmonic Distortion + Noise	THD+N	f = 1kHz, V _O = 1.5Vrms	-	TBD	-	%		
	V _{NI}	f = 0.1Hz to 10Hz	-	TBD	-	μV _{PP}		
Equivalent Input Noise Voltage		f = 1kHz	-	9	-	nV/√H z		
	e _n	f = 10kHz	-	8	-	nV/√H z		
Channel Separation	CS	NJU77572, f = 1kHz	-	TBD	-	dB		

⁽⁷⁾ V++0.2V value is limited at 5.5V.

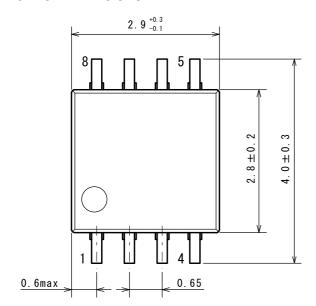


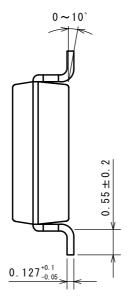
■ THERMAL CHARACTERISTICS

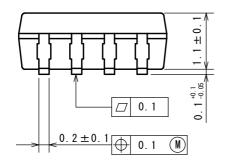
PACKAGE		VALUE	UNIT
Junction-to-Ambient Thermal Resistance	Δ.	2-Layer / 4-Layer ⁽⁶⁾	
MSOP8 (VSP8)	θ_{ja}	250 / 189	°C/W
Junction-to-Top of Package Characterization Parameter		2-Layer / 4-Layer ⁽⁶⁾	
MSOP8 (VSP8)	Ψjt	62 / 53	°C/W

^{(6) 2-}Layer: Mounted on glass epoxy board (76.2 mm x 114.3 mm x 1.6 mm: based on EIA/JEDEC standard, 2-Layer FR-4). 4-Layer. Mounted on glass epoxy board (76.2 mm x 114.3 mm x 1.6 mm: based on EIA/JEDEC standard, 4-Layer FR-4), internal Cu area: 74.2 mm x 74.2 mm.

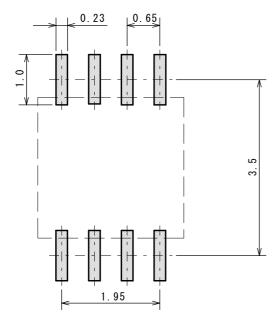
■ POWER DISSIPATION vs. AMBIENT TEMPERATURE



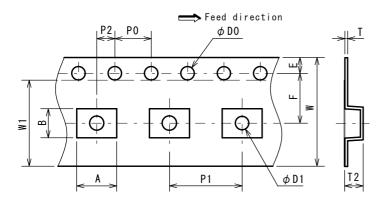

MSOP8 (VSP8) JEDEC MO-187-DA


PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Unit: mm

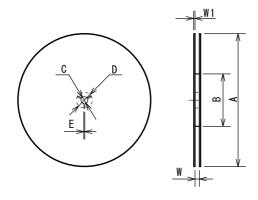

■ PACKAGE DIMENSIONS

■ EXAMPLE OF SOLDER PADS DIMENSIONS

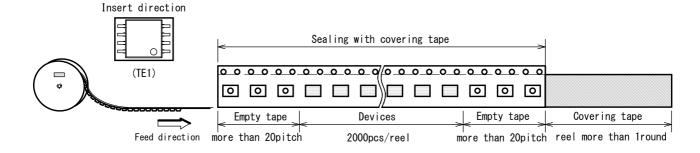

MSOP8 (VSP8) MEET JEDEC MO-187-DA

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

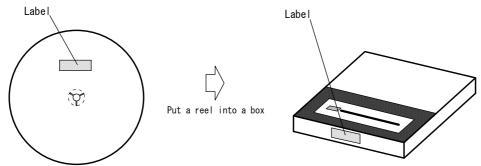
■ PACKING SPEC


Unit: mm

TAPING DIMENSIONS

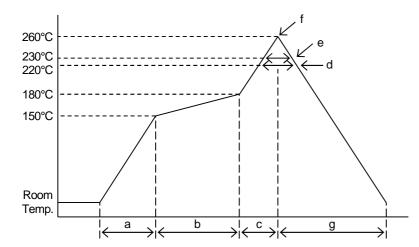

SYMBOL	DIMENSION	REMARKS
Α	4. 4	BOTTOM DIMENSION
В	3. 2	BOTTOM DIMENSION
D0	1. 5 ^{+0.1}	
D1	1. 5 ^{+0. 1}	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.05	
T	0.30 ± 0.05	
T2	2.0 (MAX.)	
W	12.0±0.3	
W1	9. 5	THICKNESS 0.1max

REEL DIMENSIONS



SYMBOL	DIMENSION
Α	$\phi 254 \pm 2$
В	φ100±1
С	φ 13±0.2
D	φ 21±0.8
E	2±0.5
W	13.5±0.5
W1	2 0+0 2

TAPING STATE


PACKING STATE

■ RECOMMENDED MOUNTING METHOD

INFRARED REFLOW SOLDERING PROFILE

а	Temperature ramping rate	1 to 4°C/s
b	Pre-heating temperature	150 to 180°C
D	Pre-heating time	60 to 120s
С	Temperature ramp rate	1 to 4°C/s
d	220°C or higher time	shorter than 60s
е	230°C or higher time	shorter than 40s
f	Peak temperature	lower than 260°C
g	Temperature ramping rate	1 to 6°C/s

The temperature indicates at the surface of mold package.

■ REVISION HISTORY

DATE	REVISION	CHANGES
March 16, 2021	Ver.0.0	Initial Release
July 8, 2018	Ver.2.0	Updated Genrral Description

[CAUTION]

- 1. NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights.
 All other trademarks mentioned herein are the property of their respective companies.
- 3. To ensure the highest levels of reliability, NJR products must always be properly handled.

 The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Automobile, airplane, railroad, ship, etc.)
 - · Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

