SPECIFICATION

PART NO. : OEL9M0084-Y-E

This specification maybe changed without any notice in order to improve performance or quality etc.

Please contact TRULY Semiconductors LTD. OLED R&D department for update specification and product status before design for this product or release the order.

PRODUCT CONTENTS

- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

TRU	/LY®信利	Customer	
Written by	ZhangJingang	App	roved by
Checked by	Li Liumin		
Approved by	ZhangWeicang		

REVISION HISTORY

Rev.	Contents	Date
1.0	Initial release.	2012-03-30

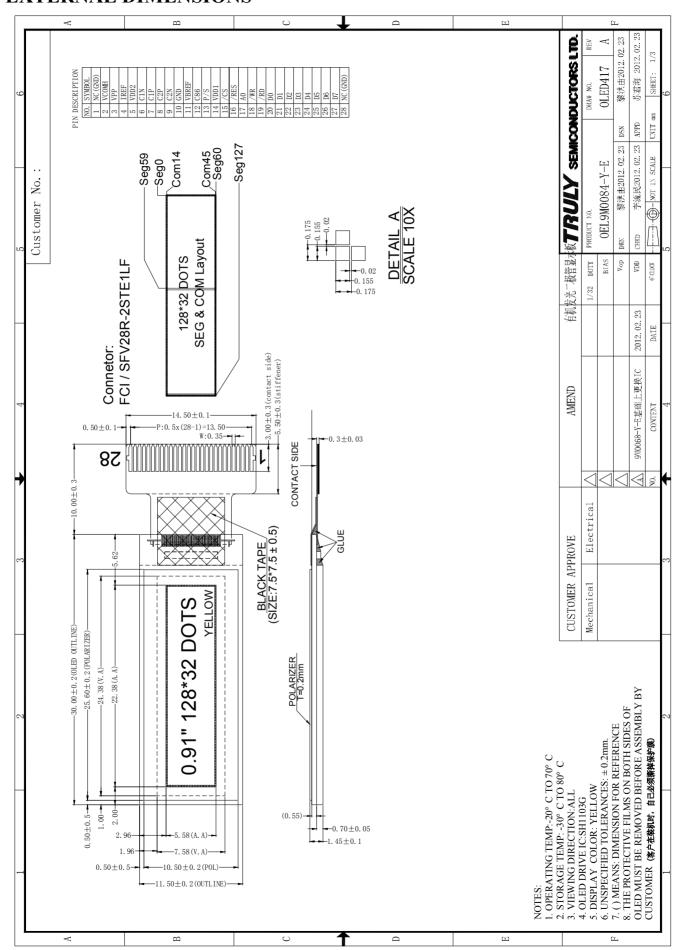
■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	0.91	Inch
2	Resolution	128(H) x 32(V)	Dots
3	Active Area	22.38(W) x 5.58(H)	mm ²
4	Outline Dimension (Panel)	30.00(W) x 11.50(H)	mm ²
5	Pixel Pitch	0.175(W) x 0.175(H)	mm ²
6	Pixel Size	0.155(W) x 0.155(H)	mm ²
7	Driver IC	SH1103G	-
8	Display Color	Yellow	-
9	Grayscale	1	Bit
10	Interface	Parallel / SPI / I2C	-
11	IC package type	COG	-
12	Thickness	1.45 ± 0.1	mm
13	Weight	<1.2	g
14	Duty	1/32	-

■ ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$

 $(Ta = 25^{\circ}C)$


Ite	ems	Symbol	Min	Тур.	Max	Unit
C1	Logic	VDD1	-0.3	1	+3.6	V
Supply Voltage	Operating	VDD2	-0.3	1	+4.3	V
Voltage	Operating	VPP	-0.3	-	+13.5	V
Operating Temperatur	re	Тор	-30	1	80	${\mathbb C}$
Storage Te	mperature	Tst	-40	-	85	$^{\circ}$
Humidity		-	-	-	90	%RH

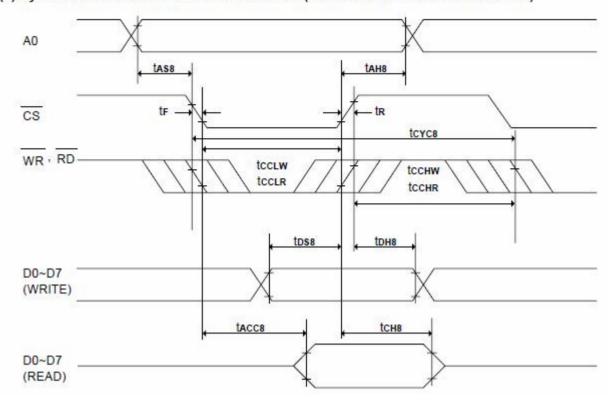
NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ EXTERNAL DIMENSIONS

■ ELECTRICAL CHARACTERISTICS

◆DC Characteristics

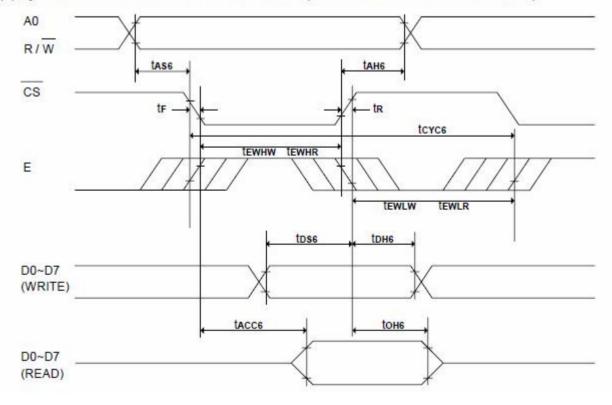

Unless otherwise specified, $V_{SS} = 0V$, VDD1 = 1.65 - 3.5V ($Ta = 25^{\circ}C$)

	Items	Symbol	Min	Typ.	Max	Unit
C1	Logic	VDD1	1.65	-	3.5	V
Supply Voltage	Operating	VDD2	3.0	-	4.2	V
Voltage	Operating	VPP	7.0	11.0	13.0	V
Input	High Voltage	$V_{ m IH}$	$0.9 \times V_{DD}$	-	$ m V_{DD}$	V
Voltage	Low Voltage	$V_{ m IL}$	V_{SS}	-	$0.1 \times V_{DD}$	V
Output	High Voltage	V_{OH}	$0.8 \times V_{DD}$	-	$V_{ m DD}$	V
Voltage	Low Voltage	V_{OL}	V_{SS}	-	$0.2 \times V_{DD}$	V

♦AC Characteristics

(1) System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)

(VDD1 = 1.65 - 3.5V, TA = +25°C)

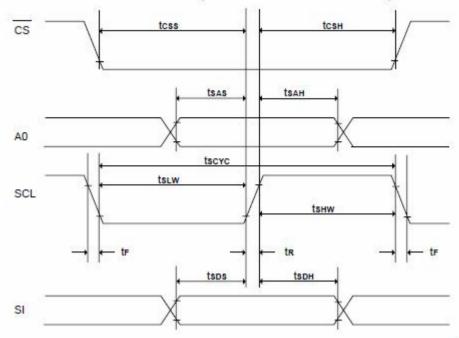

Mar.30, 2012

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	600	12	-	ns	
tas8	Address setup time	0	878	17.0	ns	
tans	Address hold time	0	929	- 2	ns	
tos8	Data setup time	80	-	100	ns	
tDH8	Data hold time	30	823		ns	
tcн8	Output disable time	20	-	140	ns	CL = 100pF
tacc8	RD access time	2	2520	280	ns	CL = 100pF
tccLw	Control L pulse width (WR)	200	683	8-0	ns	
tcclr	Control L pulse width (RD)	240	523	255	ns	
tcchw	Control H pulse width (WR)	200	683	(+)	ns	
tcchr	Control H pulse width (RD)	200	523	127	ns	
tr	Rise time	-	(38)	30	ns	
tF	Fall time	-	10.70	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	300	21	-	ns	
tas8	Address setup time	0	+:	-	ns	
tah8	Address hold time	0	21	20	ns	
tDS8	Data setup time	40	Ψ:	-	ns	
tDH8	Data hold time	15	51	-	ns	
tcн8	Output disable time	10	Ψ:	70	ns	CL = 100pF
tacc8	RD access time	7.	56	140	ns	CL = 100pF
tccLw	Control L pulse width (WR)	100	÷	848	ns	
tcclr	Control L pulse width (RD)	120	7.3	17.5	ns	
tccнw	Control H pulse width (WR)	100	20		ns	
tcchr	Control H pulse width (RD)	100	-	17.5	ns	
tR	Rise time	12	25	15	ns	
tF	Fall time	-	7-2	15	ns	

(2) System buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)


(VDD1 = 1.65 - 3.5V, TA = +25°C)

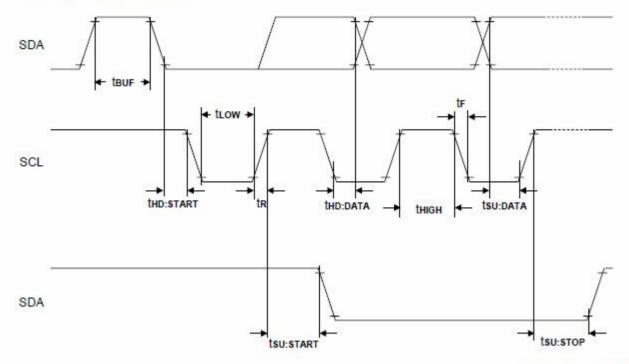
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc6	System cycle time	600	7.0	(5)	ns	
tAS6	Address setup time	0	#3	-	ns	
tAH6	Address hold time	0	+:	-	ns	
tDS6	Data setup time	80	4	-	ns	
tDH6	Data hold time	30	23	-	ns	
ton6	Output disable time	20	23	140	ns	CL = 100pF
tACC6	Access time	2	22	280	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	200	73	7.0	ns	
tewnr	Enable H pulse width (Read)	240	#3	-	ns	
tewlw	Enable L pulse width (Write)	200	-	(8)	ns	
tewlr	Enable L pulse width (Read)	200	-	-	ns	
tr	Rise time	12	43	30	ns	
tF	Fall time	-	20	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc6	System cycle time	300	E.	150	ns	
tas6	Address setup time	0	<u> </u>	120	ns	
tAH6	Address hold time	0	. 5	170	ns	
tDS6	Data setup time	40		2. - 2	ns	
tDH6	Data hold time	15	=	1+3	ns	
to _{H6}	Output disable time	10	. *	70	ns	CL = 100pF
tACC6	Access time	843	93	140	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	100	2	120	ns	
tewnr	Enable H pulse width (Read)	120			ns	
tewlw	Enable L pulse width (Write)	100	5		ns	
tewlr	Enable L pulse width (Read)	100		2.5	ns	
tr	Rise time	-	÷	15	ns	
tF	Fall time	-		15	ns	

(3) System buses Write characteristics 3(For the Serial Interface MPU)

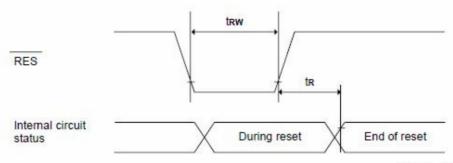
(VDD1 = 1.65 - 3.5V, TA = +25°C)


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	120	35%	ns	
tsas	Address setup time	300	7:		ns	
tsah	Address hold time	300	7.5		ns	
tsps	Data setup time	200	=8:	(32)	ns	
tsdh	Data hold time	200	- ES	(32)	ns	
tcss	CS setup time	240	40	1211	ns	
tcsH	CS hold time time	120	23	-	ns	
tshw	Serial clock H pulse width	200	=8:	(52)	ns	
tsLw	Serial clock L pulse width	200	±3	(-)	ns	
tR	Rise time		E3 3	30	ns	
tF	Fall time	-	- 1	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	33	130	ns	
tsas	Address setup time	150	22	32%	ns	
tsah	Address hold time	150	-8	199	ns	
tsps	Data setup time	100	₹3		ns	
tsdH	Data hold time	100	58	173	ns	
tcss	CS setup time	120	43	-	ns	
tcsH	CS hold time time	60	₩.	/ 3 0	ns	
tsHW	Serial clock H pulse width	100	- 38	:30	ns	
tsLw	Serial clock L pulse width	100	20	123	ns	
tr	Rise time	-	-4	15	ns	
tF	Fall time	- 1	- 33	15	ns	


(3) I2C interface characteristics


(VDD1 = 1.65 - 3.5V, TA = +25°C)

Mar.30, 2012

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fscL	SCL clock frequency	DC	+	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	141	uS	
THIGH	SCL clock H pulse width	0.6	2	928	uS	
TSU:DATA	data setup time	100	Ži.	120	nS	
THD:DATA	data hold time	0	5	0.9	uS	
TR	SCL - SDA rise time	20+0.1Cb	5.	300	nS	
TF	SCL , SDA fall time	20+0.1Cb	2	300	nS	
Cb	Capacity load on each bus line		E	400	pF	
Tsu:start	Setup timefor re-START	0.6	-	-	uS	
THD:START	START Hold time	0.6	÷	(149)	uS	
Tsu:stop	Setup time for STOP	0.6	29	929	uS	
TBUF	Bus free times between STOP and START condition	1.3	Ki .	25:	uS	

(4) Reset Timing

(VDD1 = 1.65 - 3.5V, TA = +25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tr	Reset time		12	2.0	μs	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
trw	Reset low pulse width	10.0	is .		μs	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tr	Reset time			1.0	μs	
trw	Reset low pulse width	5.0	(5		μS	

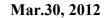
■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items	Symbol	Min.	Тур.	Max.	Unit	Remark	
Operating Lumi	L	55	70*	-	cd /m ²	Internal Charge Pump	
Operating Lumi	nance	L	80	100*	-	Cu /III	External VPP
Power Consum	ntion	Р	-	15	30	mW	Internal Charge Pump 30% pixels ON
Tower Consum	1	-	25	45	mW	External VPP 30% pixels ON	
Frame Freque	ency	Fr	-	100	-	Hz	-
Color Coordinate	Yellow	CIE x	0.42	0.46	0.50	CIE1931	Darkroom
Color Coordinate	1 CHOW	CIE y	0.47	0.51	0.55	CIET731	Darkitonii
Dagnanga Tima	Rise	Tr	-	-	0.02	ms	-
Response Time	Decay	Td	-	-	0.02	ms	-
Contrast Ratio*		Cr	10000:1	-	-		Darkroom
Viewing Angle Ur	Δθ	160	-	-	Degree	-	
Operating Life	Time*	Тор	60,000	-	-	Hours	L ₀ =70cd/m ²

Note:

1. **70cd/m²** is based on VDD1=VDD2=3.3V, enable internal charge pump, contrast command setting 0xEF;

100cd/m² is based on V_{DD}=3.0V, External VPP=11.0V, disable internal charge pump and external VPP power supply, contrast register value is 0xCF;


2. Contrast ratio is defined as follows:

3. **Life Time** is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternately displayed) (The initial value should be closed to the typical value after adjusting.)

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description						
1	NC (GND)	No connection or connected to GND						
2	VCOMH	High level voltage output of COM signal						
3	VPP	Power supplied for OLED panel. Generated by internal charge pump or supplied by externally						
4	IREF	This is a segment current reference pad. A resistor should be connected between this pad and VSS.						
5	VDD2	3.0-4.2V power supply for internal charge pump. This pin can be disconnected or connect to VDD1 when VPP is supplied externally.						
6	C1N							
7	C1P	Connect to charge pump capacitor. These pins are not used						
8	C2P	and should be disconnected when VPP is supplied externally.						
9	C2N	externally.						
10	GND	Ground.						
11	VBREF	Internal voltage reference pad for booster circuit. A stabilization capacitor(1uF) should be connected to VSS.						
12	C86	Interface gwitch and						
13	P/S	Interface switch pad.						
14	VDD1	Power supply input: 1.65 -3.5V.						
15	/CS	The chip select pin. Low is enabled.						
16	/RES	Reset signal input pad, low enable.						
17	A0	Data/Command data control pin						
18	/WR	Parallel interface write pin, connected to MCU, low enable.						
19	/RD	Parallel interface read pin, connected to MCU, low enable.						
20~27	D0~D7	Data bus. In SPI mode, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI), D2 to D7 are NC or connected to GND. In I2C mode, D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDAI). D2 to D7 are NC or connected to GND.						
28	NC (GND)	No connection or connected to GND						

MCU Interface Selection

The 8080/6800-Parallel Interface, Serial Interface (SPI) or IIC Interface can be selected by different selections of C86, P/S as shown in below table

	Cor	nfig		Data signal								Co	Control signal		
Interface	C86	P/S	D7	D6	D5	D4	D3	D2	D1	D0	E/RD	WR	CS	A0	RES
6800	0	1	D7	D6	D5	D4	D3	D2	D1	D0	Е	R/W	CS	A0	RES
8080	1	1	D7	D6	D5	D4	D3	D2	D1	D0	RD	WR	CS	A0	RES
SPI	0	0		Pull Low					SI	SCL		Pull Lov	W	A0	RES
I ² C	1	0		Pull Low						SCL		Pull Lov	W	SA0	RES

Note: 0 is connected to GND 1 is connected to VDD1.

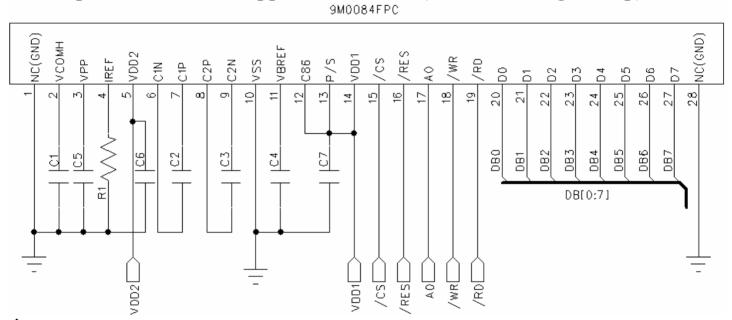
■ COMMAND TABLE

Command						Code						Function	
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	
Set Column Address 4 lower bits	0	1	0	0	0	0	0	Lower column address			dress	Sets 4 lower bits of column address of display RAM in register. (POR = 00H)	
Set Column Address 4 higher bits	0	1	0	0	0	0	1	Higher column address			dress	Sets 4 higher bits of column address of display RAM in register. (POR = 10H)	
3. Reserved Command	0	1	0	0	0	1	0	0	1	0	0	Reserved	
4. Reserved Command	0	1	0	0	0	1	0	0	1	1	0	Reserved	
5. Reserved Command	0	1	0	0	0	4	0	1	1	1	D	Reserved	
6. Set Display Start Line	0	1	0	0	1			Line address				Specifies RAM display line for COM0. (POR = 40H)	
7. The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contras Setting of the display.	
Contrast Data Register Set	0	1	0			(Contra	ast Data				The chip has 256 contrast steps from 00 to FF. (POR = 80H)	
8. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. (POR = A0H)	
9. Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	Selects normal display (0) o Entire Display ON (1). (POF = A4H)	
10. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)	
11. Multiplex Ration Mode Set	0	1	0	1	0	1	0	1	0	0	0	This command switches default 48 multiplex mode to	
Multiplex Ration Data Set	0	1	0	*	*		ı	Multiplex Ratio				any multiplex ratio from 1 to 48. (POR = 2FH)	
12. DC-DC Control Mode Set	0	1	0	1	0	1	0	1	1	0	1	This command is to control the DC-DC voltage DC-DC will be turned on when display on converter (1) or DC-DC OFF (0). (POR = 8BH)	
DC-DC ON/OFF Mode Set	0	1,	0	1	0	0	0	1	0	1	D		

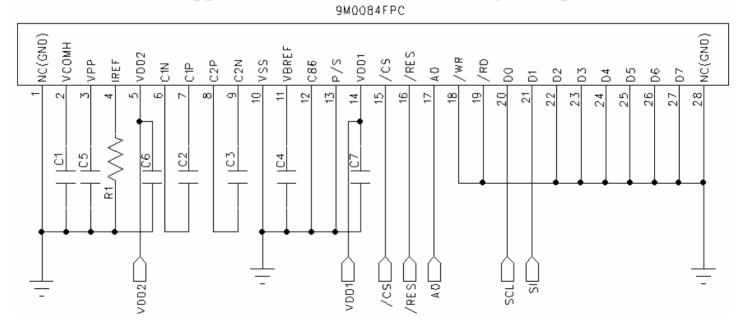
C		v.	w.:	549 539		Code	8		VII.0 050	,		F	
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	
13. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0). (POR = AEH)	
14. Set Page Address	0	1	0	1	0	1	1	1	Page A	Addres	s	Specifies page address to load display RAM data to page address register. (POF = B0H)	
15. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COM0 (1). (POR = C0H)	
16. Display Offset Mode Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command which specifies	
Display Offset Data Set	0	1	0	*	*			CC	Mx			the mapping of display start line to one of COM0-47. (POR = 00H)	
17. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to s the frequency of the intern display clocks. (POR = 50H)	
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	illator	Freque	ency	Divide Ratio				and the second second	
18. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge	
Dis-charge /Pre-charge Period Data Set	0	1	0	Di	s-charç	ge Per	iod	Pr	e-char	ge Per	iod	period. (POR = 22H)	
19. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage	
VCOM Deselect Level Data Set	0	1	0			٧	сом ((β X VPP)				level at deselect stage. (POR = 35H)	
20. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.	
21. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.	
22. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command	
23. Write Display Data	1	1	0			V	Vrite R.	AM da	ta				
24. Read Status	0	0	1	BUSY	ON/ OFF	*	*	*	0	0	0		
25. Read Display Data	1	0	1		Read RAM data								

Note: Do not use any other commands, or the system malfunction may result. Please find the detailed description of Commands in datasheet of driver IC SH1103G.

Rev: 1.0 Mar.30, 2012

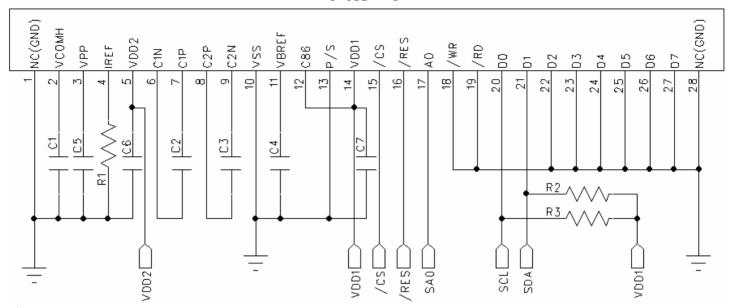

■ INITIALIZATION CODE

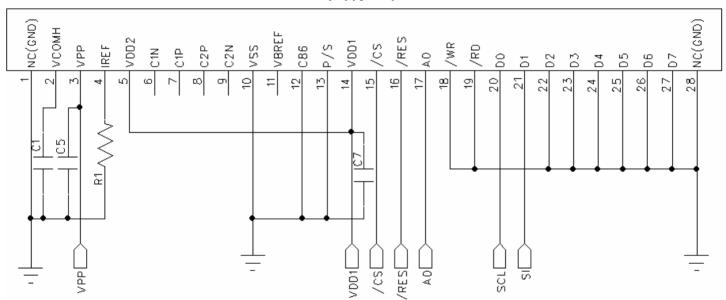
```
void init oled()
                            //DISPLAY OFF
MainOLED WCom(0xAE);
//Fundamental command
MainOLED WCom(0X81);
                           //Set Contrast, the value is higher the OLED is brighter
MainOLED WCom(0XEF);
MainOLED WCom(0XA4);
                            //Entire Disaplay:A4( Normal mode)/A5(All pixel on).
                            //Set Normal(A6)/Inverse Display(A7)
MainOLED WCom(0XA6);
//Addressing Setting
MainOLED WCom(0X04);
                           //Set Lower Column Start Address
MainOLED WCom(0X10);
                           //Set Higher Column End Address
MainOLED WCom(0XB0);
                            //Set Start Page
//Hardware Configuration
MainOLED_WCom( 0X40);
                            //Start Line
MainOLED_WCom(0XA1);
                            //Set Segment Re-map A0/A1
MainOLED WCom(0XA8);
                            //Set Multiplex Ratio
MainOLED WCom(0X1F);
MainOLED WCom(0XC0);
                            //Set COM Output Scan Direction C0/C8
MainOLED WCom(0XD3);
                            //Set Display Offset
MainOLED WCom(0X32);
//Timing & Driving Scheme setting
MainOLED_WCom(0XD5);
                            //Divide Ratio/Oscillator Frequency Set
MainOLED WCom(0X51);
                            //Fr \approx 100Hz
MainOLED WCom(0XD9);
                            //Set Pre-charge Period
MainOLED WCom(0X22);
//Set VCOMH Deselect Level
MainOLED_WCom(0XDB);
MainOLED_WCom(0X35);
                           //VCOMH is 0.77*VPP(Default)
```


```
//Charge Pump Command
MainOLED WCom(0XAD);
                         //Enable Charge Pump 0X8B, Disable Charge Pump 0X8A
MainOLED_WCom(0X8B);
MainOLED WCom(0xAF);
                        //DISPLAY ON
```

■ SCHEMATIC EXAMPLE

♦8080 parallel Interface Application Circuit(Internal Charge Pump):


◆Serial Interface Application Circuit(Internal Charge Pump):


◆ IIC Interface Application Circuit (Internal Charge Pump):

9МОО84ГРС

♦Serial Interface Application Circuit(External VPP=11.0V):

9M0084FPC

Note:

- 1. R1=510KΩ, C1=C5=C6=4.7 uF(Ceramic), C2=C3=0.22 uF(Ceramic),
 - C7=0.1 uF(Ceramic), R2=R3=10K;
- 2. In internal charge pump mode:

ADh: Charge pump setting

8Bh: Enable internal charge pump;

In external VPP mode:

ADh: Charge pump setting

8Ah: Disable internal charge pump;

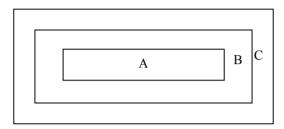
- 3. R2, R3 are pull up resistors in IIC interface;
- 4. In Serial interface mode, the read function is not available.

■ RELIABILITY TESTS

	Item	Condition	Criterion				
High Te	emperature Storage (HTS)	80±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 				
High Ter	mperature Operating (HTO)	70±2°€, 96 hours	3. After testing, the change of luminance should be within +/- 50% of initial value.				
Low Te	emperature Storage (LTS)	-30±2°C, 200 hours	4. After testing, the change for the mono and area color must be				
Low Ter	mperature Operating (LTO)	-20±2°€, 96 hours	within (+/-0.02, +/- 0.02) and for the full color it must be within (+/-0.04, +/-0.04) of				
High Tempe	erature / High Humidity Storage (HTHHS)	50±3°C, 90%±3%RH, 120 hours	initial value based on 1931 CIE coordinates. 5. After testing, the change of total current				
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	consumption should be within +/- 50% of initial value.				
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.					
Drop Height: 1 m, each time for 6 sides, 3 edges, 1 angle		2. No addition to the cosmetic	and the electrical defects.				
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 					

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■ OUTGOING QUALITY CONTROL SPECIFICATION

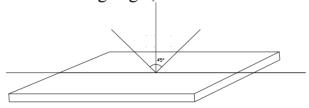
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

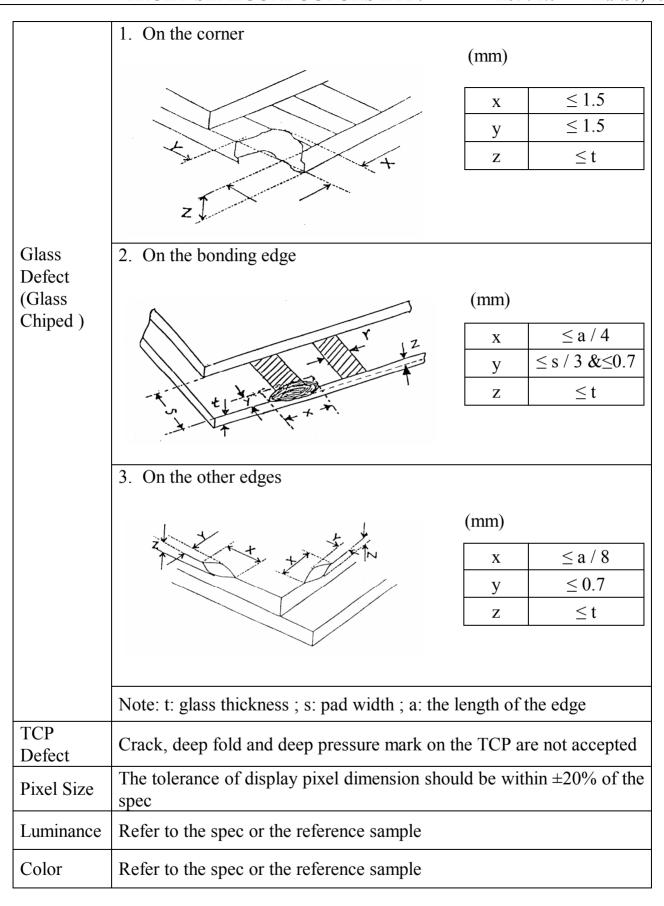
1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25 ± 5 °C.

♦Inspection Criteria

1 Major defect: AOI = 0.65

	•						
Item	Criterion						
	1. No display or abnormal display is not accepted						
Function Defect	2. Open or short is not accepted.						
	3. Power consumption exceeding the spec is not accepted.						
Outline Dimension	Outline dimension exceeding the spec is not accepted.						
Glass Crack	Glass crack tends to enlarge is not accepted.						


2 Minor Defect : AQL= 1.5

TRULY®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Mar.30, 2012

Item		Criterion						
	Size	(mm)	Accepted Q	ty				
Spot			Area A + Area B	Area C				
Defect		$\Phi \leq 0.07$	Ignored					
(dimming and	Y	$0.07 < \Phi \le 0.10$	3					
lighting	X	0.10<Φ≦0.15	1	Ignored				
spot)	 	0.15<Φ	0					
	Note: $\Phi = (x + y) /$	2		1				
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C				
Defect	/	$W \leq 0.02$	Ignored					
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2					
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored				
line)	/	0.05 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect					
Polarizer Stain		wiped off lightly with a otherwise, according						
		een during operation, and the Line Defect.	according to the cri	terions				
	2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:							
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C				
Scratch	/	W ≤ 0.02	Ignore					
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2					
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore				
	/	$0.06 \le W$	0					
	Si	ze	Area A + Area B	Area C				
Polarizer		$\Phi \leq 0.20$	Ignored					
Air Bubble	Y	$0.20 < \Phi \leq 0.30$	2					
	X	$0.30 < \Phi \leq 0.50$	1	Ignored				
		0.50<⊕	0					

Rev: 1.0 Mar.30, 2012

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

Rev: 1.0 Mar.30, 2012

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

- 1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
- 2. Soldering time: 3-4 sec.
- 3. Repeating time: no more than 3 times.
- 4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

◆PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material, process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.