SPECIFICATION

PART NO. : OEL9M1009-W-E

This specification maybe changed without any notice in order to improve performance or quality etc.

Please contact TRULY Semiconductors LTD. OLED R&D department for update specification and product status before design for this product or release the order.

Rev: 1.0

PRODUCT CONTENTS

- n PHYSICAL DATA
- n ABSOLUTE MAXIMUM RATINGS
- n EXTERNAL DIMENSIONS
- n ELECTRICAL CHARACTERISTICS
- n TIMING OF POWER SUPPLY
- n ELECTRO-OPTICAL CHARACTERISTICS
- **n INTERFACE PIN CONNECTIONS**
- n COMMAND TABLE
- n INITIALIZATION CODE
- n SCHEMATIC EXAMPLE
- n RELIABILITY TESTS
- n OUTGOING QUALITY CONTROL SPECIFICATION
- n CAUTIONS IN USING OLED MODULE

TRU	/LY ®信利	Customer	
Written by	He Kai	App	proved by
Checked by	Yang Xueyu		
Approved by	Zhang Weicang		

Rev: 1.0

Oct.27, 2013

Rev.	Contents	Date
0.1	Preliminary	2013-09-02
1.0	Initial release.	2013-10-27

Oct.27, 2013

Rev: 1.0

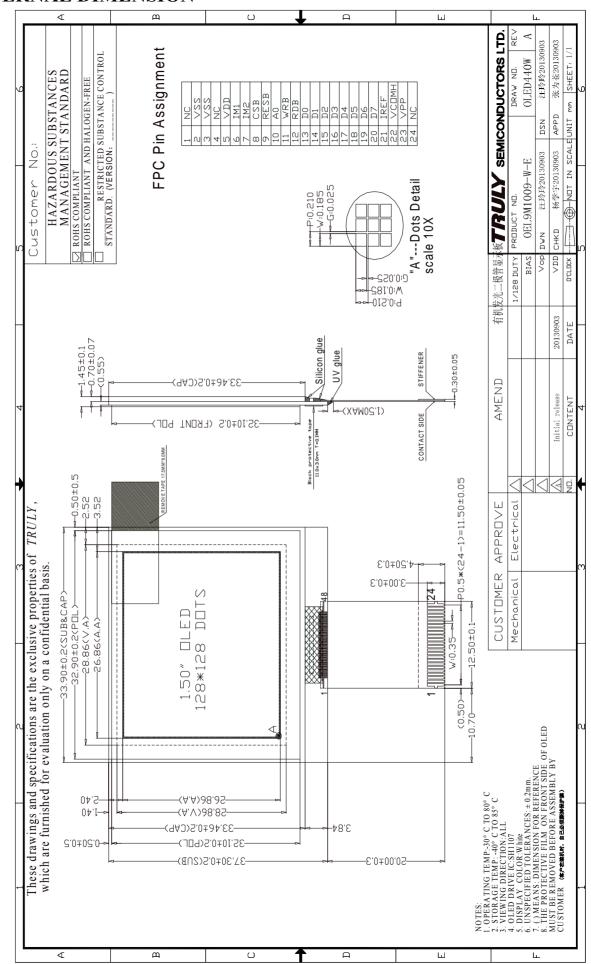
n PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	1.50	Inch
2	Resolution	128 (H) x 128(V)	Dots
3	Active Area	26.86 (W) x 26.86(H)	mm ²
4	Outline Dimension (Panel)	33.90 (W) x 37.30(H)	mm ²
5	Pixel Pitch	0.210 (W) x 0.210 (H)	mm ²
6	Pixel Size	0.185 W) x 0.185 (H)	mm ²
7	Driver IC	SH1107G	-
8	Display Color	White	-
9	Gray scale	1	Bit
10	Interface	Parallel / SPI / I ² C	-
11	IC package type	COG	-
12	Thickness	1.45 ± 0.1	mm
13	Weight	TBD	g
14	Duty	1/128	-

n ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$

 $(Ta = 25^{\circ}C)$

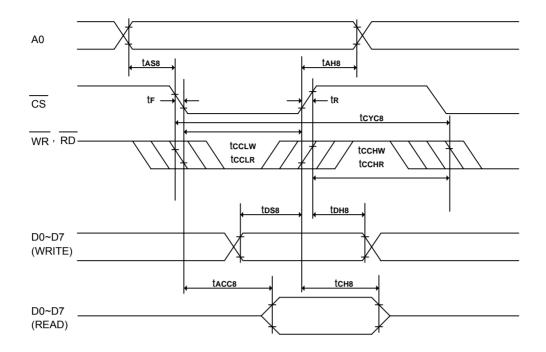

Items		Symbol	Min	Тур.	Max	Unit
Supply	Logic	$V_{ m DD}$	-0.3	1	3.6	V
Voltage	Driving	V_{PP}	-0.3	-	17.0	V
Operating 7	Гетрегаture	Тор	-30	-	80	${\mathbb C}$
Storage Te	mperature	Tst	-40	-	85	$^{\circ}$
Humidity		-	-	-	90	%RH


NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

n EXTERNAL DIMENSION

NELECTRICAL CHARACTERISTICS

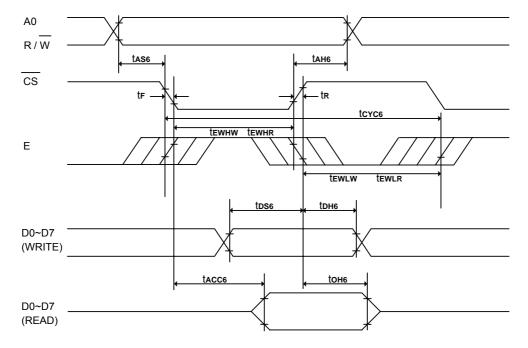

♦DC Characteristics

Unless otherwise specified, V_{SS} = 0V, V_{DD} =1.65 V to 3.5V, AVDD=2.4 V to 3.5V (Ta = +25 °C)

Items		Symbol	Min	Тур.	Max	Unit
Supply	Logic	$V_{ m DD}$	1.65	-	3.5	V
Voltage	Operating	V_{PP}	7.0	-	16.5	V
Input	High Voltage	V_{IH}	$0.8 \times V_{DD}$	-	$ m V_{DD}$	V
Voltage	Low Voltage	$V_{\rm IL}$	$ m V_{SS}$	-	$0.2 \times V_{DD}$	V
Output	High Voltage	V_{OH}	$0.8 \times V_{DD}$	-	$ m V_{DD}$	V
Voltage	Low Voltage	$V_{ m OL}$	$ m V_{SS}$	-	$0.2 \times V_{DD}$	V

♦AC Characteristics

(1) System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)


$$(VDD = 1.65V - 2.4V, TA = +25^{\circ}C)$$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	300	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tAH8	Address hold time	0	-	-	ns	
tDS8	Data setup time	40	-	-	ns	
tDH8	Data hold time	30	-	-	ns	
tсн8	Output disable time	10	-	70	ns	CL = 100pF
tACC8	RD access time	-	-	280	ns	CL = 100pF
tccLw	Control L pulse width (WR)	100	-	-	ns	
tcclr	Control L pulse width (RD)	120	-	-	ns	
tcchw	Control H pulse width (WR)	100	-	-	ns	
tcchr	Control H pulse width (RD)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

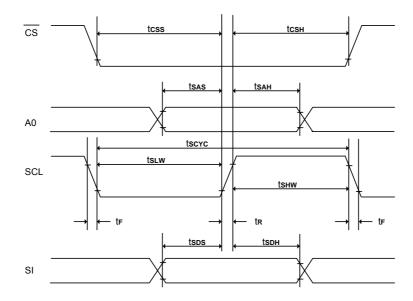
 $(VDD = 2.4V - 3.5V, TA = +25^{\circ}C)$

Symb ol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	300	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tAH8	Address hold time	0	-	-	ns	
tDS8	Data setup time	40	-	-	ns	
tDH8	Data hold time	15	-	-	ns	
tCH8	Output disable time	10	-	70	ns	CL = 100pF
tACC8	RD access time	-	-	140	ns	CL = 100pF
tccLw	Control L pulse width (WR)	100	ı	-	ns	
tCCLR	Control L pulse width (RD)	120	-	-	ns	
tcchw	Control H pulse width (WR)	100	-	-	ns	
tcchr	Control H pulse width (RD)	100	-	-	ns	
tr	Rise time	1	1	15	ns	
tF	Fall time	-	-	15	ns	

(2) System buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)

 $(VDD = 1.65 - 2.4V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	30	-	-	ns	
tOH6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	100	-	-	ns	
tewhr	Enable H pulse width (Read)	120	-	-	ns	
tewLw	Enable L pulse width (Write)	100	-	-	ns	
tewlr	Enable L pulse width (Read)	100	-	-	ns	
tr	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	


Rev: 1.0

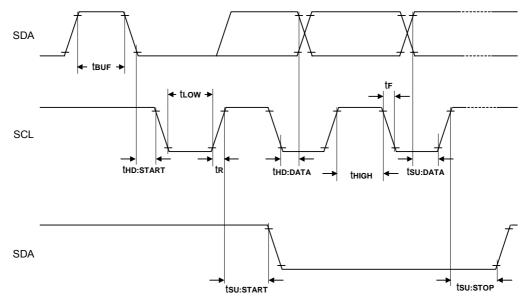
Oct.27, 2013

 $(VDD = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	15	-	-	ns	
tон6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	140	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	100	-	-	ns	
tewhr	Enable H pulse width (Read)	120	-	-	ns	
tewLw	Enable L pulse width (Write)	100	-	-	ns	
tEWLR	Enable L pulse width (Read)	100	-	-	ns	
tr	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

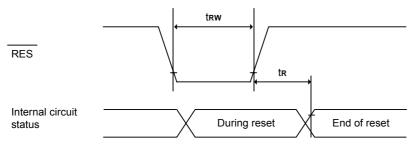
(3) System buses Write characteristics 3 (For 4 wire SPI)

 $(VDD1 = 1.65 - 2.4V, TA = +25^{\circ}C)$


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	-	-	ns	
tsas	Address setup time	300	-	-	ns	
tsah	Address hold time	300	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdh	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tcsн	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tsLw	Serial clock L pulse width	200	-	-	ns	
tr	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	-	-	ns	
tsas	Address setup time	150	-	-	ns	
tsah	Address hold time	150	-	-	ns	
tsds	Data setup time	100	-	-	ns	
tsdh	Data hold time	100	-	-	ns	
tcss	CS setup time	120	-	-	ns	
tcsн	CS hold time time	60	-	=	ns	
tshw	Serial clock H pulse width	100	-	=-	ns	
tsLw	Serial clock L pulse width	100	-	-	ns	
tr	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

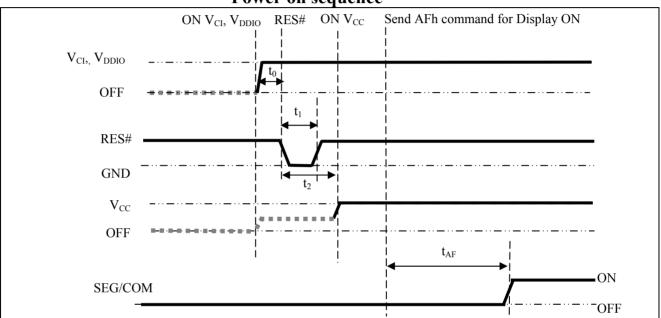

(4) I²C interface characteristics

 $(VDD = 1.65 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fscL	SCL clock frequency	DC	-	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	-	μS	
Тнісн	SCL clock H pulse width	0.6	-	-	μS	
TSU:DATA	data setup time	100	-	-	ns	
THD:DATA	data hold time	0	-	0.9	μS	
Tr	SCL , SDA rise time	20+0.1Cb	-	300	ns	
TF	SCL , SDA fall time	20+0.1Cb	-	300	ns	
Cb	Capacity load on each bus line	-	-	400	pF	
Tsu:start	Setup timefor re-START	0.6	-	-	μS	
THD:START	START Hold time	0.6	-	-	μS	
Tsu:stop	Setup time for STOP	0.6	-	-	μS	
TBUF	Bus free times between STOP and START condition	1.3	-	-	μS	

(5) Reset Timing

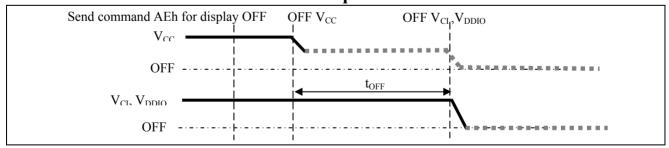
 $(VDD = 1.65 - 3.5V, TA = +25^{\circ}C)$


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tr	Reset time	-	-	2.0	μS	
trw	Reset low pulse width	10.0	-	-	μS	

n TIMING OF POWER SUPPLY

◆Power ON sequence:

- 1. Power ON V_{CI} , V_{DDIO} .
- 2. After V_{CI} , V_{DDIO} becomes stable, set wait time at least 1ms (t_0) for internal V_{DD} become stable. Then set RES# pin LOW (logic low) for at least 100us (t_1) ⁽⁴⁾ and then HIGH (logic high).
- 3. After set RES# pin LOW (logic low), wait for at least 100us (t₂). Then Power ON V_{CC}. (1)
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after 200ms (t_{AF}).



◆Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF $V_{CC.}^{(1),(2),(3)}$
- 3. Wait for t_{OFF} . Power OFF V_{CI} , V_{DDIO} . (where Minimum t_{OFF} =0ms (5), Typical t_{OFF} =100ms)

Power off sequence

Note:

- $^{(1)}$ Since an ESD protection circuit is connected between V_{CI} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{CI} whenever V_{CI} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure above.
- (2)V_{CC} should be kept float (disable) when it is OFF.
- (3) Power pins (V_{CI}, V_{CC}) can never be pulled to ground under any circumstance.
- $^{(4)}$ The register values are reset after t_1 .
- ⁽⁵⁾ VCI, V_{DDIO} should not be Power OFF before VCC Power OFF.

n ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items	Symbol	Min.	Typ.	Max.	Unit	Remark	
Operating Lumi	L	80	100*	-	cd/m ²	White	
Power Consum	P	-	200	240	mW	30% pixels ON	
Frame Freque	Fr	-	100	-	Hz		
Color Coordinate	White	CIE x	0.25	0.29	0.33	CIE1931	Darkroom
Color Coordinate	white	CIE y	0.29	0.33	0.37	CIE1931	
Dagnanga Tima	Rise	Tr	-	-	0.02	ms	-
Response Time	Decay	Td	-	-	0.02	ms	-
Contrast Rat	io*	Cr	10000:1	-	-		Darkroom
Viewing An	gle	Δθ	160	-	-	Degree	-
Operating Life	Time*	Тор	20,000	-	-	Hours	L=100cd/ m2

Note:

- 1. 100cd/ m2 is based on $V_{DD}=3.0V$, $V_{PP}=13V$, contrast command setting 0XDF;
- **2. Contrast Ratio** is defined as follows:

Contrast ratio = Photo – detector output with OLED being "white" Photo – detector output with OLED being "black"

3. Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternately displayed), (The initial value should be closed to the typical value after adjusting.).

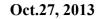
Oct.27, 2013

No	Symbol	Description
1	NC	No connection
2	V_{SS}	Ground
3	V_{SS}	Ground
4	NC	No connection
5	V_{DD}	1.65 - 3.5V Power supply for logic and input.
6	IM1	MPU interface mode select pads.
7	IM2	MPU interface mode select pads.
8	CSB	This pad is the chip select input. When CSB = "L", then the chip select becomes active, and data/command I/O is enabled.
9	RESB	This is a reset signal input pad. When RESB is set to "L", the settings are initialized. The reset operation is performed by the RES signal level.
10	A0	This is the Data/Command control pad that determines whether the data bits are data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver.
11	WRB	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/W = "H": Read. When R/W = "L": Write.
12	RDB	This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU.
13~20	D0~D7	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance.

TRULY ®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Oct.27, 2013

		THEEL SENIEGIND COUNTRY ELD.	100 . 1.0	00027, 2010
21	IREF	This is a segment current reference pad. A	resistor should	be connected
21 IKI	IKEF	between this pad and VSS. Set the current at	15.625mA.	
22	V_{COMH}	This is a pad for the voltage output high	level for comm	on signals. A
22	V COMH	capacitor should be connected between this p	ad and VSS.	
23	V	This is the most positive voltage supply p	ad of the chip.	It should be
23	V_{PP}	supplied externally.		
24	NC	No connection		
	. =			

These are the MPU interface mode select pads.


	8080	I2C	6800	4-wire SPI
IM1	1	1	0	0
IM2	1	0	1	0

Note: 0 is connected to VSS 1 is connected to VDD

Oct.27, 2013

n COMMAND TABLE

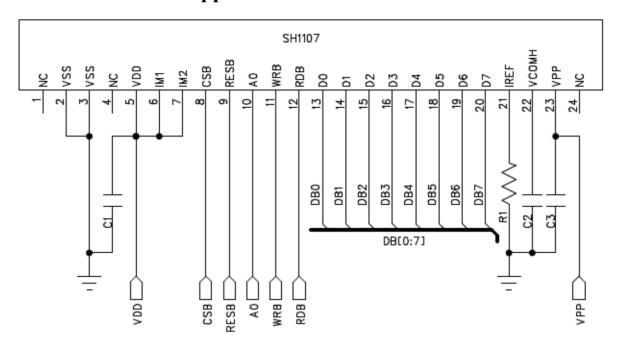
Command						Code						Function
Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
Set Column Address 4 lower bits	0	1	0			Sets 4 lower bits of column address of display RAM in register. (POR = 00H)						
2.Set Column Address 4 higher bits	0	1	0	0 0 0 1 0 Higher column address		Sets 4 higher bits of column address of display RAM in register. (POR = 10H)						
3.Set memory addressing mode	0	1	0	0	0	1	0	0	0	0	D	D = 1, Vertical Addressing Mode D = 0, Page Addressing Mode (POR=20H)
The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This command is to set Contrast Setting of the display.
Contrast Data Register Set	0	1	0	Contrast Data						The chip has 256 contrast steps from 00 to FF. (POR = 80H)		
5. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The down (0) or up (1) rotation. (POR = A0H)
6. Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	Selects normal display (0) or Entire Display ON (1). (POR = A4H)
7. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)
8. DC-DC Control	0	1	0	1	0	1	0	1	1	0	1	This command is to control
Mode Set DC-DC Setting Mode Set	0	1	0	1	0	0	0	F2	F1	F0	D	the DC-DC voltage DC-DC will be turned on when display on converter (1) or DC-DC OFF (0). (POR = 81H)

Command Table (Continued)

Command						Code						Function	
Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	
9. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0). (POR = AEH)	
10. Set Page Address	0	1	0	1	0	1	1	1	Page A	Address	8	Specifies page address to load display RAM data to page address register. (POR = B0H)	
11 Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COM0 (1). (POR = C0H)	
12. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks. (POR = 50H)	
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	illator	Freque	ency		Divide	Ratio			
13. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge	
Dis-charge /Pre-charge Period Data Set	0	1	0	Dis	s-charç	ge Peri	iod	Pr	Pre-charge Period			period. (POR = 22H)	
14. VCOM Deselect	0	1	0	1	1	0	1	1	0	1	1	This command is to set the	
Level Mode Set VCOM Deselect Level Data Set	0	1	0		$VCOM = (\beta_1 \times VREF)$						common pad output voltage level at deselect stage. (POR = 35H)		
17. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.	
18. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.	
19. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command	
20 Write Display Data	1	1	0			V	Vrite R	AM da	ta				
21 Read ID	0	0	1	BUSY	ON/ OFF			I	D				
22. Read Display Data	1	0	1			R	ead R	AM da	ta				

Note: Do not use any other command, or the system malfunction may result.

Oct.27, 2013

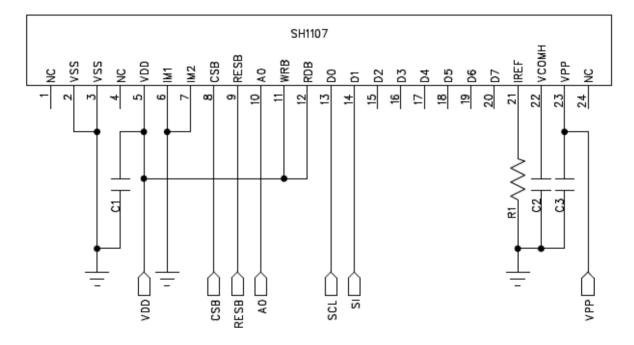

Rev: 1.0

n INTIALIZATION CODE

```
void Initial 1107()
WMLCDCOM(0xAE);//Display OFF
WMLCDCOM(0x0F);//Set Column Address 4 lower bits
WMLCDCOM(0x17);//Set Column Address 4 higher bits
WMLCDCOM(0xA0);//Set Segment Re-map
WMLCDCOM(0xD9);//Set Dis-charge/Pre-charge Period
WMLCDCOM(0x89);
WMLCDCOM(0xD5); //Set Display Clock Divide Ratio/Oscillator Frequency
WMLCDCOM(0xB0):
WMLCDCOM(0x20);//Set Page Addressing Mode
WMLCDCOM(0xDB);//Set VCOM
WMLCDCOM(0x35);
WMLCDCOM(0x81);//Set Contrast
WMLCDCOM(CONTRAST);
WMLCDCOM(0xC0);//Set Common Output Scan Direction
WMLCDCOM(0xA4);//Set Entire Display OFF
WMLCDCOM(0xA6);//Set Normal/Reverse Display
WMLCDCOM(0xAD);//Set DC-DC OFF
WMLCDCOM(0x80);
Clear();
WMLCDCOM(0xAF);
```

n SCHEMATIC EXAMPLE

♦8080 Parallel Interface Application Circuit:

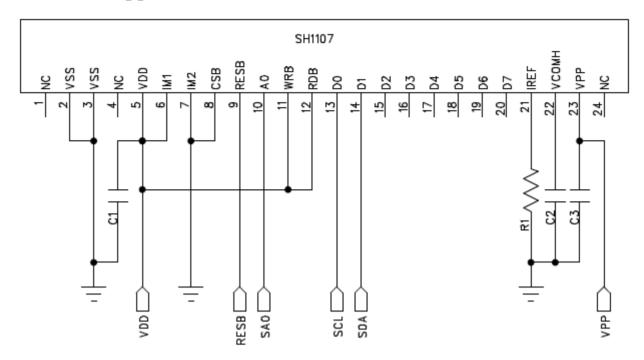


Note:

C1: 4.7UF C2~ C3:4.7UF/35V+/-10% tantalum capacitor (suggest)

R1: about 750 K Ω , R1 = (Voltage at I_{REF} - V_{SS})/ I_{REF}

◆4-wire SPI Serial Interface Application Circuit:



Note:

C1: 4.7UF $C2 \sim C3:4.7UF/35V+/-10\%$ tantalum capacitor (suggest).

R1: Recommend 750 K Ω .

◆I²C Interface Application Circuit:

Note:

C1: 4.7UF $C2 \sim C3:4.7UF/35V+/-10\%$ tantalum capacitor (suggest)

R1: Recommend 750 KΩ

The least significant bit of the slave address is set by connecting the input SA0 to either logic 0(VSS) or 1(VDD)

The positive supply of pull-up resistor must equal to the value of VDD.

Recommend the value of resistor Rp equal to 1.5 K Ω

TRULY®信利 TRULY SEMICONDUCTORS LTD.

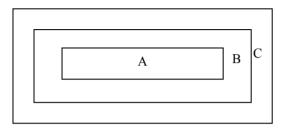
Rev: 1.0 Oct.27, 2013

n RELIABILITY TESTS

	Item	Condition	Criterion			
High Te	emperature Storage (HTS)	$85\pm2^{\circ}$ C, 200 hours				
High Ter	nperature Operating (HTO)	80±2°C, 96 hours	addition to the defect. 3. After testing, the change of luminance should be within +/- 50% of initial value.			
Low Te	mperature Storage (LTS)	-40±2°C, 200 hours	4. After testing, the change for the mono and area color must be within (+/-0.02, +/-			
Low Ten	nperature Operating (LTO)	-30±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of initial value based on			
High Tempe	rature / High Humidity Storage (HTHHS)	50±3°C, 90%±3%RH, 120 hours	1931 CIE coordinates. 5. After testing, the change of total current consumption should be			
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	within +/- 50% of initial value.			
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.	e and the electrical defects.			
Drop (Packing)	Height: 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic				
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


n OUTGOING QUALITY CONTROL SPECIFICATION

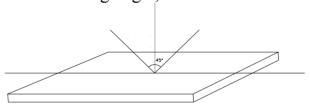
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

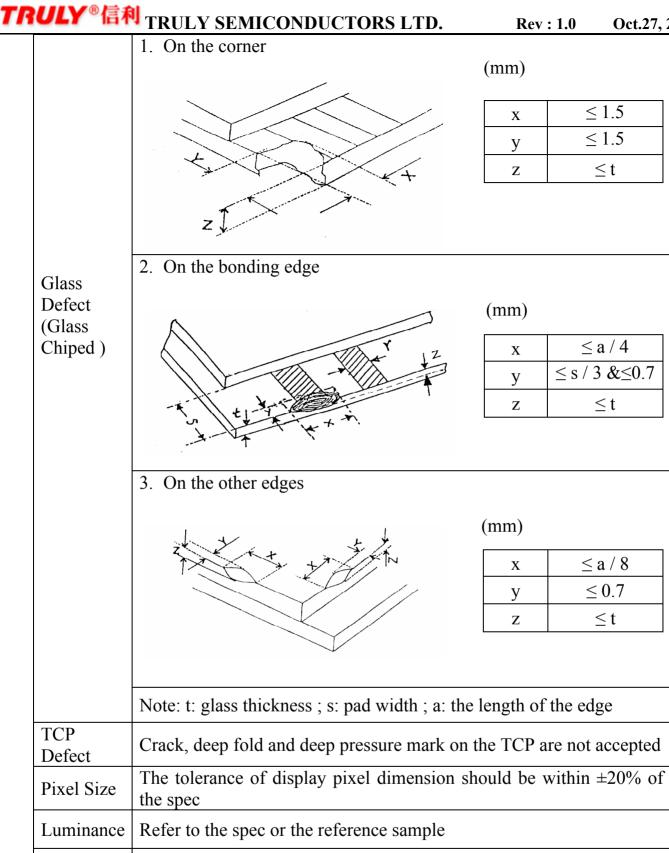
1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25 ± 5 °C.

◆Inspection Criteria

1 Major defect: AQL= 0.65

Item	Criterion					
	1. No display or abnormal display is not accepted					
Function Defect	2. Open or short is not accepted.					
	3. Power consumption exceeding the spec is not accepted.					
Outline Dimension	Outline dimension exceeding the spec is not accepted.					
Glass Crack	Glass crack tends to enlarge is not accepted.					



TRULY ®信利 TRULY SEMICONDUCTORS LTD. Rev: 1.0 Oct.27, 2013 2 Minor Defect: AQL= 1.5

Item	Criterion									
	Size		Accepted Q	ty						
Spot			Area A + Area B	Area C						
Defect (dimming		$\Phi \leq 0.07$	Ignored							
and	$ \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \mathbf{Y} $	$0.07 < \Phi \le 0.10$	3							
lighting	X	0.10<Φ≦0.15	1	Ignored						
spot)	 	0.15<Φ	0							
	Note: $\Phi = (x + y) /$	2								
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C						
Defect	/	$W \leq 0.02$	Ignored							
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2							
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored						
line)	/ 0.05 <w as="" defect<="" spot="" td=""></w>									
distance bet	he total of spot defect ween two lines defect	s must exceed 1 mm								
Polarizer Stain		viped off lightly with , otherwise, according								
	1. If scratch can be seen during operation, according to the criterions of the Spot Defect and the Line Defect.									
	2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:									
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C						
Scratch	/	$W \leq 0.02$	Ignore	_1						
	3.0 <l≦5.0< td=""><td>0.00 < 111 < 0.04</td><td>4</td><td></td></l≦5.0<>	0.00 < 111 < 0.04	4							
	3.0 < L = 3.0	$0.02 < W \le 0.04$	2							
	L≤3.0	$0.02 < W \le 0.04$ $0.04 < W \le 0.06$	1	Ignore						
			1	Ignore						
		$0.04 < W \le 0.06$ 0.06 < W	1	Ignore Area C						
Dolorizor	L≦3.0 / Si	$0.04 < W \le 0.06$ 0.06 < W	0							
Polarizer Air Bubble	L≦3.0	$0.04 < W \le 0.06$ 0.06 < W ze	1 0 Area A + Area B	Area C						
Polarizer Air Bubble	L≦3.0 / Si	$0.04 < W \le 0.06$ 0.06 < W ze $\Phi \le 0.20$	1 0 Area A + Area B Ignored							

Oct.27, 2013

Refer to the spec or the reference sample

Color

Rev: 1.0 Oct.27, 2013

n CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizes with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{PP}$, and power off sequence: $V_{PP} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

Rev: 1.0 Oct.27, 2013

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.

2. Soldering time: 3-4 sec.

3. Repeating time: no more than 3 times.

4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material ,process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.