SPECIFICATION

PART NO. : OEL9M1010-R-E

This specification maybe changed without any notice in order to improve performance or quality etc.

Please contact TRULY Semiconductors LTD. OLED R&D department for update specification and product status before design for this product or release the order.


PRODUCT CONTENTS

- n PHYSICAL DATA
- n ABSOLUTE MAXIMUM RATINGS
- n EXTERNAL DIMENSIONS
- n ELECTRICAL CHARACTERISTICS
- n ELECTRO-OPTICAL CHARACTERISTICS
- n Interface PIN Connections
- n COMMAND TABLE
- n INITIALIZATION CODE
- n SCHEMATIC EXAMPLE
- n RELIABILITY TESTS
- *nOUTGOING QUALITY CONTROL SPECIFICATION*
- n CAUTIONS IN USING OLED MODULE

TRU	/LY ®信利	Customer	
Written by	He Kai	App	roved by
Checked by	Yang Xueyu		
Approved by	Zhang Weicang		

REVISION HISTORY

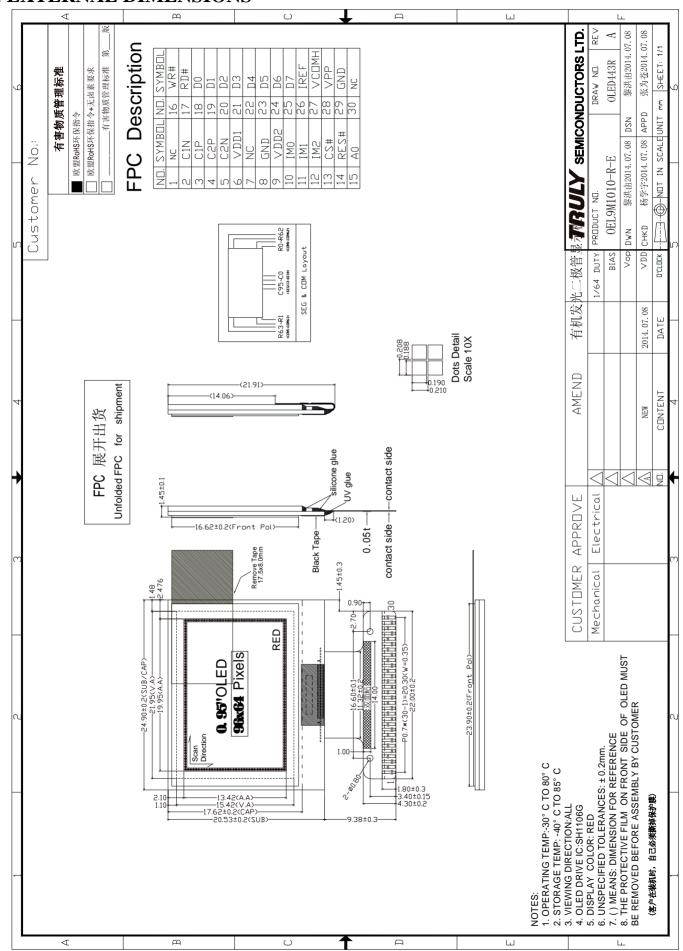
Rev.	Contents	Date
0.1	First release	2014-07-09

n PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	0.95	Inch
2	Resolution	96(H) x 64(V)	Dots
3	Active Area	19.95(W) x 13.42(H)	mm ²
4	Outline Dimension (Panel)	24.90(W) x 20.53(H)	mm ²
5	Pixel Pitch	0.208(W) x 0.210 (H)	mm ²
6	Pixel Size	0.188(W) x 0.190(H)	mm ²
7	Driver IC	SH1106G	-
8	Display Color	Red	-
9	Gray scale	1	Bit
10	Interface	Parallel / Serial/IIC	-
11	IC package type	COG	-
12	Thickness	1.45±0.1	mm
13	Weight	TBD	g
14	Duty	1/64	-

n ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, (Voltage Referenced to V_{SS}) ($Ta = 25^{\circ}C$)


Items		Symbol	Min	Тур.	Max	Unit
	Logic	VDD1	-0.3	-	3.6	V
Supply Voltage	Logic	VDD2	-0.3		4.3	V
, orange	Driving	VPP	-0.3	-	14.5	V
Operating Temperatur	re	Тор	-30	-	80	$^{\circ}$
Storage Temperature		Tst	-40	-	85	$^{\circ}$ C
Humidity		-	-	-	90	%RH

NOTE:

Permanent device damage may occur if absolute maximum ratings are exceeded.

Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

n EXTERNAL DIMENSIONS

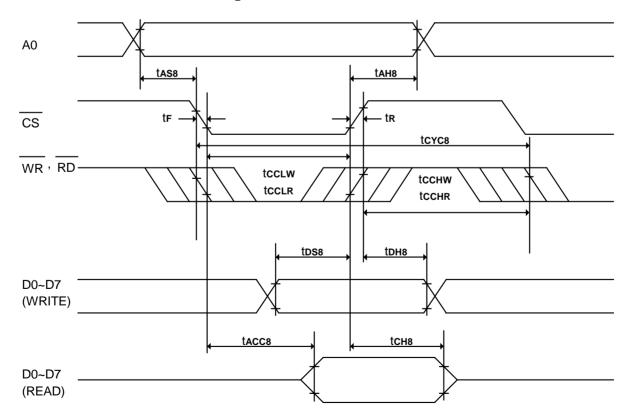
n ELECTRICAL CHARACTERISTICS

◆DC Characteristics

Condition (Unless otherwise specified):

Voltage referenced to V_{SS} , V_{DD1} =1.65V to 3.5V, $Ta=25\,^{\circ}\text{C}$

Items		Symbol	Min	Typ.	Max	Unit
	Logic	VDD1	1.65	3.3V	3.5	V
Supply Voltage	Charge Pump Regulator Supply Voltage	VDD2	3.0	3.3V	4.2	V
	Operating	VPP	6.4	-	14.0	V
Input	High Voltage	V_{IH}	$0.8 \times V_{DD1}$	-	V_{DD1}	V
Voltage	Low Voltage	$V_{ m IL}$	V_{SS}	-	$0.2 \text{ x V}_{\text{DD1}}$	V
Output	High Voltage	V_{OH}	$0.8 \times V_{DD1}$	-	V_{DD1}	V
Voltage	Low Voltage	V_{OL}	V_{SS}	-	0.2 x V _{DD1}	V

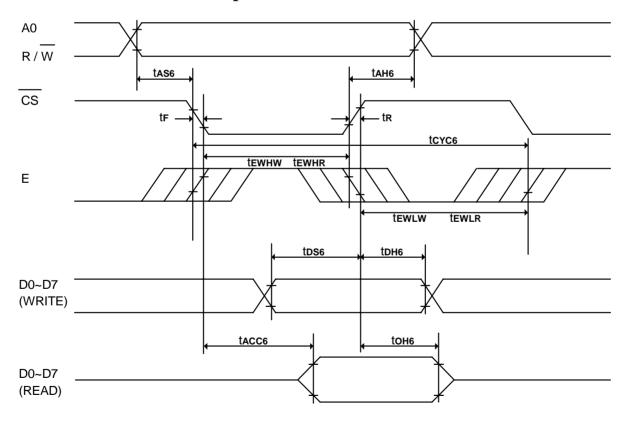

♦AC Characteristics

1.8080-Series Parallel Interface Timing Characteristics

 $(V_{DD1} - V_{SS} = 1.65 \text{V to } 3.5 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	600	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tAH8	Address hold time	0	-	-	ns	
tDS8	Data setup time	80	-	-	ns	
tDH8	Data hold time	30	-	-	ns	
tCH8	Output disable time	20	-	140	ns	CL = 100pF
tACC8	RD access time	-	-	280	ns	CL = 100pF
tccLw	Control L pulse width (WR)	200	-	-	ns	
tCCLR	Control L pulse width (RD)	240	-	-	ns	
tcchw	Control H pulse width (WR)	200	-	-	ns	
tcchr	Control H pulse width (RD)	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

8080-series parallel interface characteristics

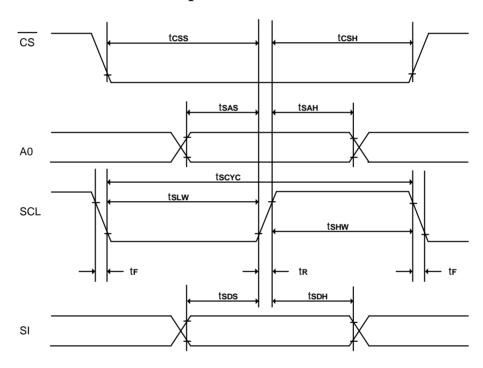


2.6800-Series Parallel Interface Timing Characteristics

 $(V_{DD1} - V_{SS} = 1.65 \text{V to } 3.5 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	600	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	80	-	-	ns	
tDH6	Data hold time	30	-	-	ns	
tOH6	Output disable time	20	-	140	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tEWHW	Enable H pulse width (Write)	200	-	-	ns	
tEWHR	Enable H pulse width (Read)	240	-	-	ns	
tEWLW	Enable L pulse width (Write)	200	-	-	ns	
tEWLR	Enable L pulse width (Read)	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

6800-series parallel interface characteristics

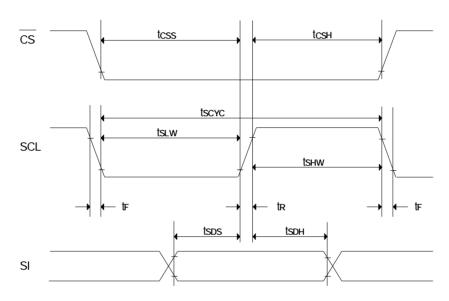


3. 4-wire Serial Peripheral Interface Timing Characteristics

 $(V_{DD1} - V_{SS} = 1.65 \text{V to } 3.5 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	-	-	ns	
tsas	Address setup time	300	-	-	ns	
tsah	Address hold time	300	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdh	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tcsH	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tsLw	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

4-wire Serial Peripheral Interface characteristics

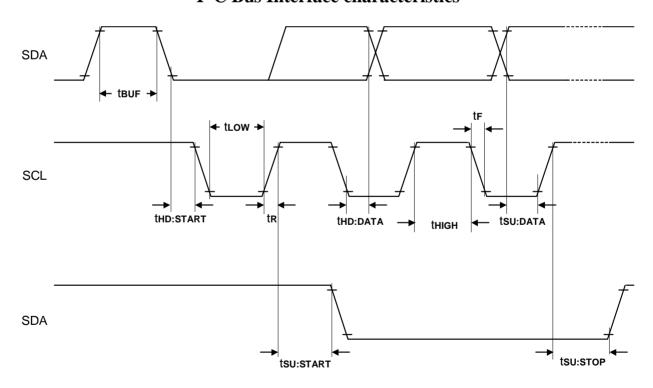


4. 3-wire Serial Peripheral Interface Timing Characteristics

 $(V_{DD1} - V_{SS} = 1.65 \text{V to } 3.5 \text{V }, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdh	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tcsH	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tsLw	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

3-wire Serial Peripheral Interface characteristics



5. I² C Bus Interface Timing Characteristics

 $(V_{DD1}\!-\!V_{SS}\!\!=\!\!1.65V$ to 3.5V , T_A =25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fSCL	SCL clock frequency	DC	-	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	-	uS	
Тнідн	SCL clock H pulse width	0.6	-	-	uS	
TSU:DATA	data setup time	100	-	-	nS	
THD:DATA	data hold time	0	-	0.9	uS	
Tr	SCL , SDA rise time	20+0.1Cb	-	300	nS	
TF	SCL , SDA fall time	20+0.1Cb	-	300	nS	
Cb	Capacity load on each bus line	-	-	400	pF	
Tsu:start	Setup timefor re-START	0.6	-	-	uS	
THD:START	START Hold time	0.6	-	-	uS	
Tsu:stop	Setup time for STOP	0.6	-	-	uS	
TBUF	Bus free times between STOP and START condition	1.3	-	-	uS	

I² C Bus Interface characteristics

n ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items		Symbol	Min.	Тур.	Max.	Unit	Remark
Operating Lumi	inance	L	TBD	TBD*	-	cd/m ²	All pixels ON
Power Consumption		P	-	45	55	mW	Internal Charge Pump 30% pixels ON
Frame Freque	ency	Fr	-	100	-	Hz	-
Color Coordinate	Red	CIE x	0.61	0.65	0.69	CIE1931	Darkroom
Color Coordinate	Reu	CIE y	0.30	0.34	0.38	CIE1931	Darkfoolii
Dagnanga Tima	Rise	Tr	-	-	0.02	ms	-
Response Time	Decay	Td	-	-	0.02	ms	-
Contrast Rat	Contrast Ratio*		10000:1	-	-	-	Darkroom
Viewing Angle		Δθ	160	-	-	Degree	-
Operating Life	Time*	Тор	TBD	_	-	Hours	L=TBD

Note:

- 1. **TBD** is based on VDD1=VDD2=**3.3V**; Enable internal charge pump at **8.0V**, pump voltage command setting **0x32**; Contrast command setting **0xCF**.
- 2. Contrast ratio is defined as follows:

3. **Life Time** is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternately displayed) (The initial value should be closed to the typical value after adjusting.)

n INTERFACE PIN CONNECTIONS

No	Symbol	Description
1	NC	No connection
2	C1N	
3	C1P	Connect to charge pump capacitor. These pins are not used and should be disconnected when Vpp is supplied
4	C2P	externally.
5	C2N	
6	VDD1	Power supply input: 1.65 - 3.5V
7	NC	No connection
8	GND	This is a ground pin
9	VDD2	3.0 – 4.2V power supply pad for Power supply for charge pump circuit. This pin should be disconnected when VPP is supplied externally.
10	IM0	
11	IM1	MCU bus interface selection pins.
12	IM2	
13	CS#	This is the chip select input.(active LOW)
14	RES#	This is a reset signal input pad. When RES is set to "L", the settings are initialized. The reset operation is performed by the RES signal level.
15	A0	This is the Data/Command control pad that determines whether the data bits are data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver.
16	WR#	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When W R/ = "H": Read. When W R/ = "L": Write.

•		Rev: 0.1 Jul.09, 2014
17	RD#	This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RD signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. When RD = "H": Enable. When RD = "L": Disable.
18	D0	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard
19	D1	MPU data bus.
20	D2	When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1
21	D3	serves as the serial data input pad (SI). At this time, D2 to D7 are set to high
22	D4	impedance.
23	D5	When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1
24	D6	serves as the serial data input pad (SDAI). At this time, D2 to D7 are set to high
25	D7	impedance.
26	IREF	This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at $10\mu A$.
27	VOMH	This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS.
28	VPP	Power supply for panel driving voltage. This is also the most positive power voltage supply pin. When charge pump is enabled, a capacitor should be connected between this pin and VSS.
29	GND	This is an ground pin.

Microprocessor Interface Selection

No connection.

NC

30

	C	onfi	nfig Data signal							Control signal						
Interface	IMO	IM1	IM2	D7	D6	D5	D4	D3	D2	D1	D0	E/RD	WR	CS	A0	RES
6800	0	0	1	D7	D6	D5	D4	D3	D2	D1	D0	Е	R/W	cs	A0	RES
8080	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0	RD	WR	cs	A0	RES
4-Wire SPI	0	0	0		Pull Low						SCL	Pul	Low	CS	A0	RES
3-Wire SPI	1	0	0		Pull Low						SCL	Pull Low				RES
I ² C	0	1	0			Pull	Low			SDA	SCL		Pull Lov	V	SA0	RES

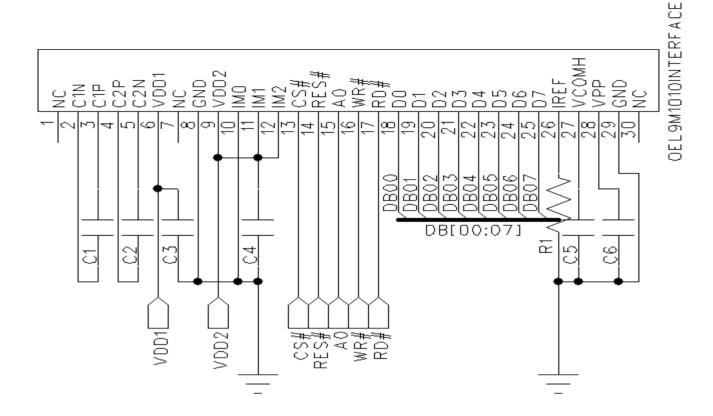
Note1: When Serial Interface (SPI) or I2C Interface is selected, D7~D2 is Hz. D7~ D2 is recommended to connect the VDD1 or VSS. It is also allowed to leave D7~ D2 unconnected.

n COMMAND TABLE

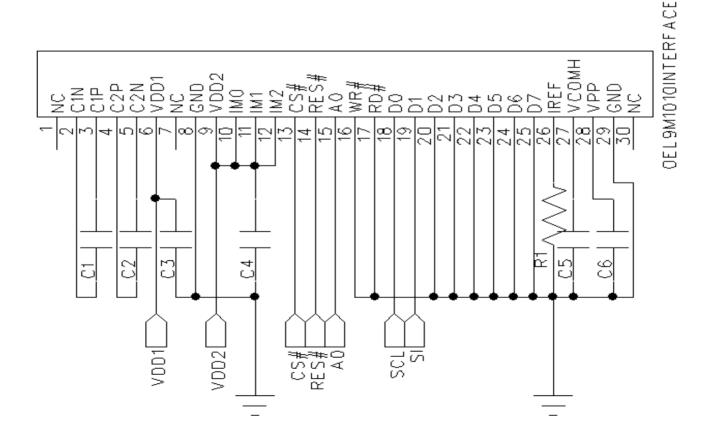
Command				Function									
Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function	
Set Column Address 4 lower bits	0	1	0	0	0	0	0 0 Lower column address			mn ade	Sets 4 lower bits of column address of display RAM in register. (POR = 00H)		
Set Column Address 4 higher bits	0	1	0	0	0	0 1 Higher column address					Sets 4 higher bits of column address of display RAM in register. (POR = 10H)		
Set Pump voltage value	0	1	0	0	0	1	1			age	This command is to control the DC-DC voltage output value. (POR=32H)		
Set Display Start Line	0	1	0	0	1		Line address					Specifies RAM display line for COM0. (POR = 40H)	
5. The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	This commandis to set Contrast Settingof the display.	
Contrast Data Register Set	0	1	0			(Contrast Data					The chip has 256 contrast steps from 00 to FF. (POR = 80H)	
6. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The right (0) or left (1) rotation. (POR = A0H)	
7. Set Entire Display OFF/ON	0	1	0	1	0	1	1 0 0 1 0 D		Selects normal display (0) or Entire Display ON (1). (POR = A4H)				
8. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	0 1 1 D		D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)	
9 Multiplex Ration Mode Set	0	1	0	1	0	1	0	1	0	0	0	This command switches default 63 multiplex mode to	
Multip lex Ration Data Set	0	1	0	*	*		N	/lultip le	ex Rati	0		any multiplex ratio from 1 to 64. (POR = 3FH)	
10. DC-DC Control Mode Set	0	1	0	1	0	1	0	1	1	0	1	This command is to control the DC-DC voltage DC-DC	
DC-DC ON/OFF Mode Set	0	1	0	1	0	0	0	1	0	1	D	will be turned on when display on converter (1) or DC-DC OFF (0). (POR = 8BH)	

2						Code						Formation	
Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	- Function	
11. Display OFF/ON	0	1	0	1	0	1	0	1	1	1	D	Turns on OLED panel (1) or turns off (0). (POR = AEH)	
12. Set Page Address	0	1	0	1	0	1 1 Page Address		Specifies page address to load display RAM data to page address register. (POR = B0H)					
13. Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM [N - 1] (0) or Scan from COM [N -1] to COM0 (1). (POR = C0H)	
14. Display Offset Mode Set	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command which specifies	
Display Offset Data Set	0	1	0	*	*			CC	Мх			the mapping of display start line to one of COM0-63. (POR = 00H)	
15. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	This command is used to set the frequency of the internal display clocks. (POR = 50H)	
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	illator	Freque	ency	Divide Ratio					
16. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	This command is used to set the duration of the dis-charge and pre-charge	
Dis-cha rge /Pre-charge Period Data Set	0	1	0	Dis	s-cha r	ge Peri	iod	Pr	e-char	ge Per	iod	period. (POR = 22H)	
17. Common Pads Hardware Configuration Mode Set	0	1	0	1	1	0	1	1	1 0 1 0		0	This command is to set the common signals pad configuration. (POR = 12H)	
Sequential/Alternat ive Mode Set	0	1	0	0	0	0	D	0	0	1	0		
18. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1	0	1	1	This command is to set the common pad output voltage	
VCOM Deselect Level Data Set	0	1	0		•	VC	COM (3 X VREF)			•	level at deselect stage. (POR = 35H)	
19. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.	
20. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.	
21. NOP	0	1	0	1	1	1	0	0	0	1	1	Non-Operation Command	
22. Write Display Data	1	1	0		Write RAM data								
23. Read Status	0	0	1	BUSY	ON/ OFF								
24. Read Display Data	24. Read Display Data 1 0 1 Read RAM data												

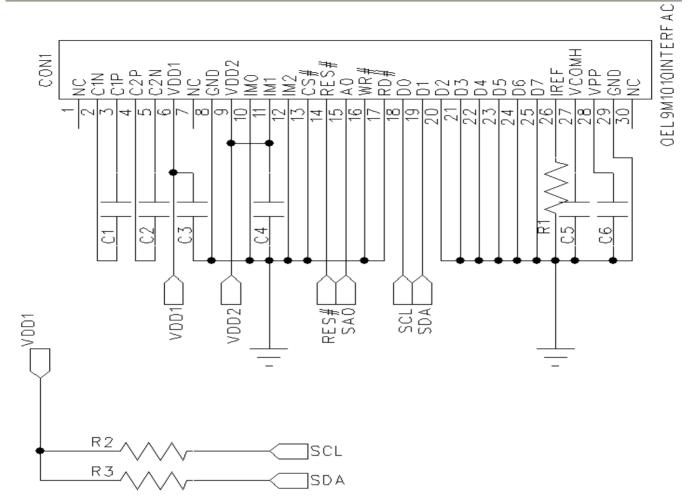
Note: Do not use any other commands, or the system malfunction may result. Please find the detailed description of Commands in Specification of Driver IC SH1106G.


```
n INITIALIZATION CODE
```

```
Init OLED_SH1106G(void)
   MainOLED_WCom(0xAE);
                            //DOT MARTIX DISPLAY OFF
   MainOLED_WCom(0x81);
                           //CONTRAST CONTROL(00H-0FFH)
   MainOLED WCom(0xCF);
   MainOLED WCom(0xA1);
                            //SET SEGMENT RE-MAP(0A0H-0A1H)
   MainOLED_WCom(0xA4);
                            //ENTIRE DISPLAY OFF(0A4H-0A5H)
   MainOLED WCom(0xA6);
                            //SET NORMAL DISPLAY(0A6H-0A7H)
   MainOLED_WCom(0xA8);
                            //SET MULTIPLEX RATIO 64
   MainOLED_WCom(0x3F);
   MainOLED WCom(0xAD);
                            //SET DC/DC BOOSTER(8AH=OFF,8BH=ON)
   MainOLED_WCom(0x8B);
   MainOLED WCom(0xC8);
                            //COM SCAN COM1-COM64(0C8H,0C0H)
   MainOLED WCom(0xD3);
                            //SET DISPLAY OFFSET(OOH-3FH)
   MainOLED_WCom(0x00);
   MainOLED_WCom(0xD5);
                            //SET FRAME FREQUENCY
   MainOLED WCom(0xA0);
   MainOLED WCom(0xD9);
                            //SET PRE CHARGE PERIOD
   MainOLED_WCom(0x1F);
   MainOLED_WCom(0xDA);
                            //COM PIN CONFIGURATION(02H,12H)
   MainOLED WCom(0x12);
   MainOLED_WCom(0x40);
                           //SET DISPLAY START LINE(40H-7FH)
   MainOLED WCom(0x32);
                           //SET PUMP VOLTAGE 8V
   MainOLED_WCom(0xDB);
                           //SET VCOM DESELECT LEVEL(35H)
   MainOLED_WCom(0x40);
   MainOLED_WCom(0xAF);
                            //DSPLAY ON
}
```



n SCHEMATIC EXAMPLE


♦8080 Series Interface Application Circuit(Internal Charge Pump):

▶4-wire SPI Interface Application Circuit(Internal Charge Pump):

♦IIC Interface Application Circuit (Internal Charge Pump):

NOTE:

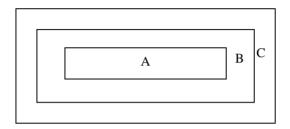
- 1. R1= (Voltage at IREF VSS)/IREF \approx 390K Ω ,C1=C2=1uF,C3=C4=C5=C6=4.7uF,R2=R3=10K;
- 2. The VDD2 should connect a external voltage;
- 3. In Serial interface mode, the read function is unavailable.

n RELIABILITY TESTS

	Item	Condition	Criterion			
High Te	emperature Storage (HTS)	85±2°€, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 			
High Ter	mperature Operating (HTO)	80±2°C, 96 hours	3. After testing, the change of luminance should be within +/- 50% of initial value.			
Low Te	emperature Storage (LTS)	-40±2°C, 200 hours	4. After testing, the change for the mono and area color must be within (+/-0.02, +/-			
Low Ten	mperature Operating (LTO)	-30±2°€, 96 hours	0.02) and for the full color it must be within (+/-0.04, +/-0.04) of initial value based on			
High Tempe	erature / High Humidity Storage (HTHHS)	50±3°C, 90%±3%RH, 120 hours	1931 CIE coordinates. 5. After testing, the change of total current consumption should be			
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	within +/- 50% of initial value.			
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.				
Drop Height: 1 m, each time for 6 sides, 3 edges, 1 angle		2. No addition to the cosmetic	c and the electrical defects.			
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


n OUTGOING QUALITY CONTROL SPECIFICATION

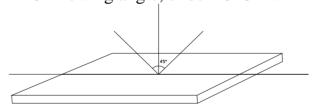
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

◆Inspection Methods

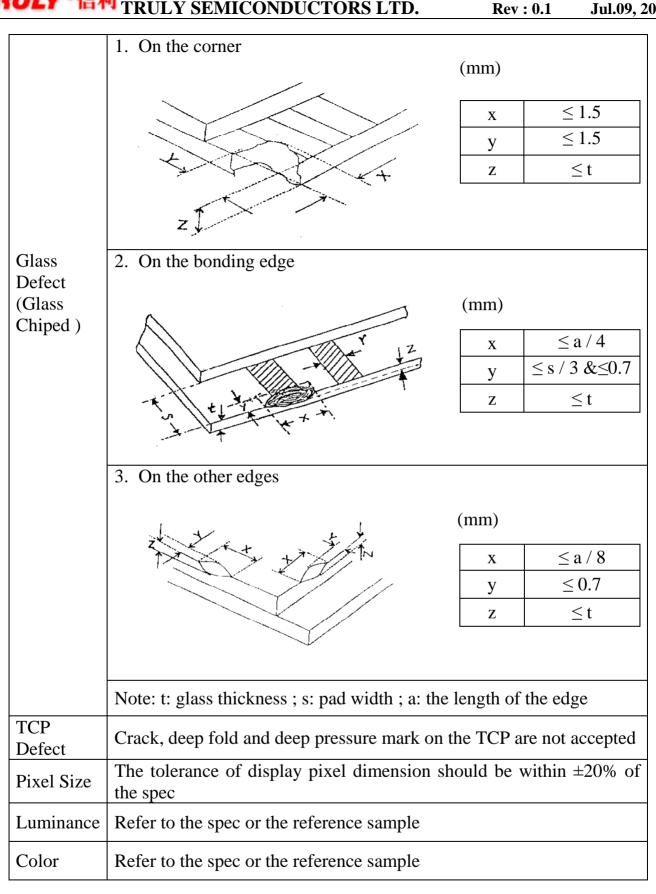
1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25±5°C.

◆Inspection Criteria

1 Major defect: AOL= 0.65

Item	Criterion					
	1. No display or abnormal display is not accepted					
Function Defect	2. Open or short is not accepted.					
	3. Power consumption exceeding the spec is not accepted.					
Outline Dimension	Outline dimension exceeding the spec is not accepted.					
Glass Crack	Glass crack tends to enlarge is not accepted.					


2 Minor Defect : AQL= 1.5

TRULY ®信利 TRULY SEMICONDUCTORS LTD. Rev: 0.1 Jul.09, 2014

Item	Criterion										
	Size	(mm)	Accepted Q	ty							
Spot		Area A + Area B	Area C								
Defect (dimming		$\Phi \leq 0.07$	Ignored	•							
and	$\left \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_4 \end{pmatrix} \right \mathbf{Y} = 0$	$0.07 < \Phi \le 0.10$	3	Ignored							
lighting	X	0.10<Φ≦0.15	1								
spot)	- 	0.15<Φ	0								
	Note: $\Phi = (x + y) / 2$										
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C							
Defect	/	W ≤ 0.02	Ignored								
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2								
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored							
line)	/	0.05 <w< td=""><td>As spot defect</td></w<>	As spot defect								
Polarizer Stain											
	Line Defect. 1. If scratch can be seen during operation, according to the criterions of the Spot Defect and the Line Defect.										
	2. If scratch can be seen only under non-operation or some special										
Polarizer	angle, the criterion is L (Length): mm	s as below: W (Width): mm	Area A + Area B	Area C							
Scratch	/ Lengur) : Illin	$W \le 0.02$	Ignore	1 Hea C							
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2								
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore							
	/	0.06 < W	0								
	Si	ze	Area A + Area B	Area C							
		Φ≦0.20	Ignored								
Polarizer Air Bubble	$\left(\begin{array}{ccc} \left(\begin{array}{ccc} A_{1} & A_{2} & A_{3} \end{array} \right) & \mathbf{Y} \end{array} \right)$	0.20<Φ≦0.30	2								
Air bubble	X	$0.30 < \Phi \leq 0.50$	1	Ignored							
	 - **	0.50<Φ	0	_							

n CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 11. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.
- 12. When displaying images, keep them rolling, and avoid one fixed image displaying more

Rev: 0.1 Jul.09, 2014

than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

♦Precautions For Soldering OLED Module:

- 1. Soldering temperature: $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
- 2. Soldering time: 3-4 sec.
- 3. Repeating time: no more than 3 times.
- 4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering Operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0° C and 30° C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material ,process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.