## SPECIFICATION FOR APPROVAL

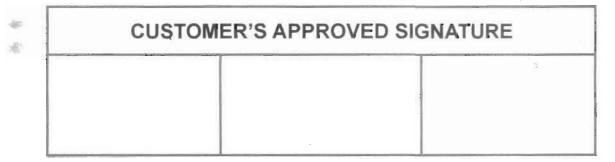


## **KEXG2224PBN-A**

KINGSTATE

Customer's Model No. :

Specification No.


Kingstate Part No.

Description

Number Of The Edition:

**PKO-7472** 

1.2



## 志豐電子股份有限公司 KINGSTATE ELECTRONICS CORP.

Address :10F, No. 69-11, Sec. 2, Chung Cheng E. Rd., Tamshui County, Taipei Hsien, Taiwan, R.O.C.

<u>,</u>

International sales dept.: TEL:886-2-2809-5651 FAX:886-2-2809-7151

Domestic sales dept.: TEL:886-2-2809-0668 FAX:886-2-28096748

http://www.kingstate.com.tw

| Approved by   | Checked by     | Issued by |
|---------------|----------------|-----------|
| ST WW JC      |                | Feng      |
| 1 tothe 2 1/2 | 5 7 2 2 2 1/28 | 02/24/10' |

#### **1** Product Overview

#### 1.1 Introduction

The FM-M101-006 is a digital small array microphone module (DSAM Module) which works along with Fortemedia patented SAM<sup>™</sup> (Small Array Microphone) algorithm running in a host to perform exceptional beam-forming effect, noise suppression, and echo cancellation. The conventional broadside microphone array needs wide spacing between microphones and cannot be used in space-limited applications. FM-M101-006 contains two microphones only few milimeters apart and can surpasses the performance of a conventional broadside array.

#### 1.2 Overview

The DSAM Module consists of two omni-directional microphones which have equipped with Fortemedia SAM Coder IC. The module outputs a pulse density modulation (PDM) signal in a single-bit digital output stream which is then decimated by a digital filter in PC HD (High Definition) Audio codec. The PDM digital output is more robust than analog output from standard traditional ECM. It provides significant system design flexibility without expensive shielded cable. Additionally, its small form factor allows easy placement in an acoustically optimal position for applications such as hand-held devices and notebook computers.

#### 1.3 Key Features

1.4 Module Pins Assignment

- High performances digital omni-directional microphone pair
- Microphone diameter = 6mm, Sensitivity= -24 ± 3 dBFS/Pa
- Fully compatible with Fortemedia SAM<sup>™</sup> algorithm
- 4-pin interface: DATA, VDD, CLK, & GND
- Digital PDM output, immune from RF noise interference
- Two sound holes on front panel only, no need for back sound holes

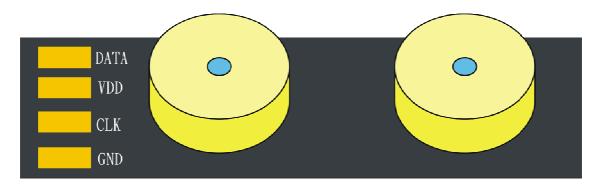



Figure 1: Module Pin Configuration

| Pin # | Pin  | I/O  | <b>Bin Description</b>                       | Bomork |  |
|-------|------|------|----------------------------------------------|--------|--|
|       | Name | Туре | Pin Description                              | Remark |  |
| 1     |      | Out  | PDM data output from small array microphone  |        |  |
|       | DATA | Out  | module to HD audio codec                     |        |  |
| 2     | VDD  | In   | 2.7V ~ 3.6V                                  |        |  |
| 3     |      |      | PDM clock input from HD audio codec to small |        |  |
|       | CLK  | In   | array microphone module                      |        |  |
| 4     | GND  | In   | Ground potential = 0V                        |        |  |

KINGSTATE

#### 1.5 System Application Block Diagram:

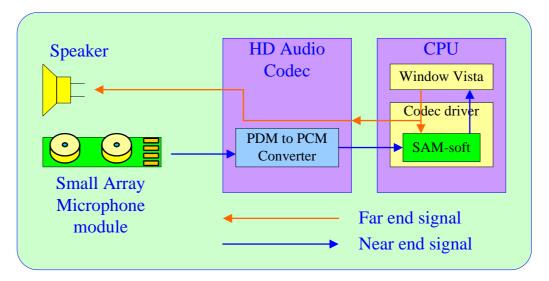



Figure 2: System Interface Block Diagram

The DSAM Module is configured to work with Intel HD Audio codec. It takes the PDM clock from HD codec. The module has two matched omni directional microphones on it. The data from two microphone channels are multiplexed in one PDM data line; First channel data transmits on rising edge of PDM clock while second channel transmits on falling edge of PDM clock. When the PDM CLK from codec halts, module enters power down mode to conserve power.

## 2 Electrical and Timing Specification

Unless otherwise specified, test conditions are:

- $V_{DD} = 3.3V$ ,
- Ta =  $27\pm2^{\circ}$ C, Room Humidity =  $65\pm5^{\circ}$ ,
- F<sub>CLK</sub> = 1.024 MHz. Clock jitter < 0.5 nsec

#### 2.1 Absolute Maximum Ratings

#### Table 1: Absolute Maximum Ratings

| Parameter              | Symbol | Condition      | Rating   | Unit |
|------------------------|--------|----------------|----------|------|
| Power Supply Voltage   | VDD    | 3.3V tolerance | 0 ~ 3.6  | V    |
| Clock Input voltage    | CLK    |                | 0 ~ 3.6  | V    |
| Digital Output Voltage | DATA   |                | 0 ~ 3.6  | V    |
| ESD Tolerance          |        | HBM*           | 4        | kV   |
| Storage temperature    |        | 40~65% RH      | -40 ~ 85 | °C   |
| Operating temperature  |        | 40~65% RH      | -20 ~ 70 | °C   |

HBM\* = Human Body Mode (Contact mode)

### 2.2 Recommended Operating Conditions

#### Table 2: Recommended Operating Conditions

| Parameters and Symbols      |                     | Sp  | Specification |     |      | Conditions/Remarks |
|-----------------------------|---------------------|-----|---------------|-----|------|--------------------|
|                             |                     | Min | Тур           | Max | Unit | Conditions/Remarks |
| Power Supply                | VDD                 | 2.7 | 3.3           | 3.6 | V    |                    |
| Active Power Supply Current | I <sub>SU</sub>     |     | 2.2           |     | mA   |                    |
| Power Down Current          | I <sub>PD</sub>     |     | 5             |     | μA   |                    |
| Input clock rate            | F <sub>clk</sub>    | 1   | 1.024         | 2.4 | MHz  |                    |
| Clock duty cycle            | T <sub>Duty</sub>   | 40  | 50            | 60  | %    |                    |
| Clock jitter                | T <sub>jitter</sub> |     | 0.3           | 1   | nsec |                    |

To ensure best performance, the ripple on Vdd should be less than 200mVpp.

#### 2.3 DC Characteristics

#### **Table 3: DC Characteristics**

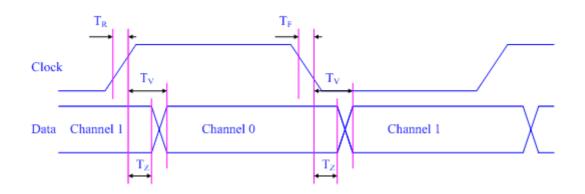
| Parameters and Symbols |                 |     | Specificatio | n   | Unit | Conditions/Remarks |
|------------------------|-----------------|-----|--------------|-----|------|--------------------|
|                        |                 | Min | Тур          | Max | Unit |                    |
| Input Voltage High     | V <sub>IH</sub> |     | VDD - 0.3    |     | V    |                    |
| Input Voltage Low      | VIL             |     |              | 0.3 | V    |                    |
| Output Voltage High    | $V_{\text{OH}}$ |     | VDD - 0.3    |     | V    |                    |
| Output Voltage Low     | V <sub>OL</sub> |     |              | 0.3 | V    |                    |

#### 2.4 Electro-Acoustic Characteristics

#### **Table 4: Electro-Acoustic Characteristics**

| Deveryotave and Symptole       | Spe              | cifica  | tion   | Unit  | Conditions/Remarks |  |
|--------------------------------|------------------|---------|--------|-------|--------------------|--|
| Parameters and Symbols         | Min              | Тур     | Max    | Unit  | Conditions/Remarks |  |
| MIC0 Directivity               | Omn              | i-direc | tional |       |                    |  |
| MIC0 SNR                       | -                | 60      | -      | dB    | See note 1         |  |
| MIC0 Sensitivity               | -27              | -24     | -21    | dBFS  | See note 2         |  |
| MIC0 Digital noise floor       |                  | -85     |        | dBFS  | See note 3         |  |
| MIC0 Maximum Input S.P.L       |                  | 114     |        | dBSPL | See note 4         |  |
| MIC1 Directivity               | Omni-directional |         |        |       |                    |  |
| MIC1 SNR                       | I                | 60      | -      | dB    | See note 1         |  |
| MIC1 Sensitivity               | -27              | -24     | -21    | dBFS  | See note 2         |  |
| MIC1 Digital noise floor       |                  | -85     |        | dBFS  | See note 3         |  |
| MIC1 Maximum Input S.P.L       |                  | 114     |        | dBSPL | See note 4         |  |
| Peak Total Harmonic Distortion | -                | -       | -78    | dB    | See note 6         |  |
| Acoustic Overload Point        | 107              |         |        | dBSPL | THD<10%            |  |
| Power Supply Rejection Rate    | -                | -55     | -      | dBFS  | See note 7         |  |
| Current Concumption            | -                | 2.2     | -      | mA    | Clock > 1MHz       |  |
| Current Consumption            |                  | 5       | -      | uA    | Clock off          |  |
| Power-up initialization        | -                | -       | 1      | ms    | See note 8         |  |

Note:


- SNR: Signal to Noise Ratio. Measured with mono tone stimulus (frequency = 1 kHz, intensity = 94dB SPL). The SNR is calculated by integrating the power spectrum density in the range of 100 Hz ~ 7.2 kHz. SNR= (Sensitivity – Digital noise floor).
- (2) Sensitivity: Measured with mono tone stimulus (frequency = 1 kHz, intensity = 94 dB SPL).
- (3) Digital noise floor: Measured with silent environment.
- (4) Maximum input SPL: SPL = Sound pressure level. Maximum input SPL = (94- Sensitivity) dB.

- (5) dBFS: decibel of Full Scale. For example, in 16 bit PCM format, sine wave with swing between -32767 ~ 32767 is 0dBFS.
- (6) Measured under mono tone stimulus (Frequency = 1 kHz, intensity = 74 dB SPL)
- (7) Measured under silent environment. Apply a square wave with amplitude = 100mVpp & clock rate = 217 Hz.
- (8) From power down state to data valid

#### 2.5 Timing Characteristics

| Parameter           | Symbol         | Min | Тур | Max | Unit | Comments              |
|---------------------|----------------|-----|-----|-----|------|-----------------------|
| Clock rising time   | T <sub>R</sub> |     |     | 10  | ns   | $R_L=1M$ , $C_L=12pF$ |
| Clock falling time  | T <sub>F</sub> |     |     | 10  | ns   | $R_L=1M$ , $C_L=12pF$ |
| DATA into hi Z time | Tz             | 0   |     | 15  | ns   | $R_L=1M$ , $C_L=12pF$ |
| DATA valid time     | T <sub>V</sub> | 18  |     | 40  | ns   | $R_L=1M$ , $C_L=12pF$ |
| Clock jitter        |                |     |     | 0.5 | ns   |                       |
| Duty cycle          |                | 40  | 50  | 60  | %    |                       |
| Clock rate          |                | 1   |     | 2.5 | MHz  |                       |

#### **Table 5: Timing Characteristics**



#### Figure 3: Timing Chart of small array microphone module

#### 2.6 Typical Frequency Response Curve

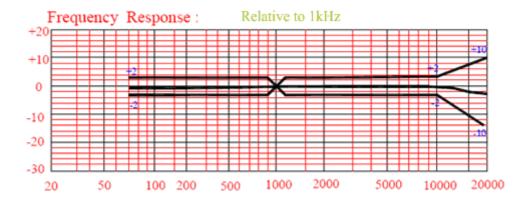



Figure 4: Omni-directional Microphone Frequency Response

(relative to 1kHz sound input)

#### 2.7 Electrical circuit:

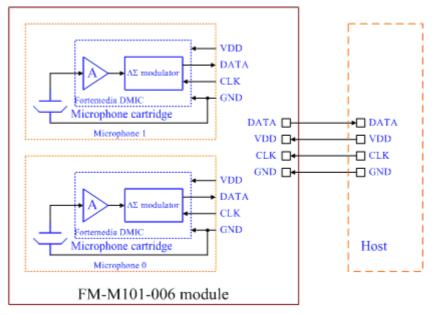



Figure 5: Electrical circuit of the FM-M101-006 module

## 3 Mechanical Design

#### 3.1 Module dimension:

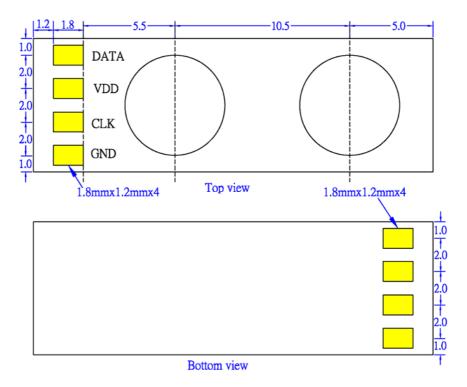
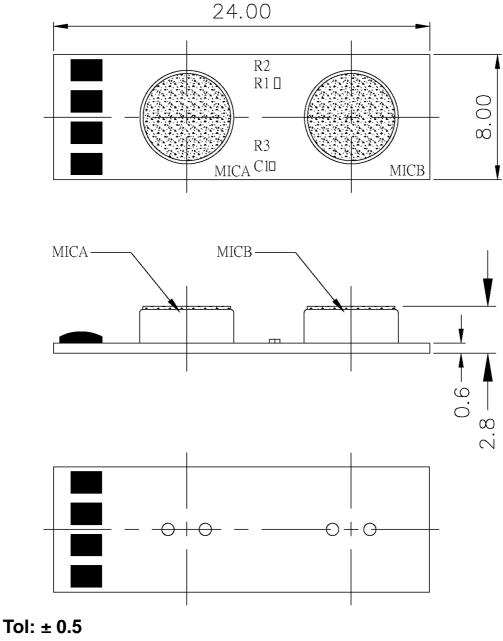



Figure 6: Top view and bottom view of module PCB

3.2 Module Dimensions:


Table 6: Module dimension

| Parameter           | Min   | Тур   | Max   | Unit | Comments         |
|---------------------|-------|-------|-------|------|------------------|
| Module length       | 23.90 | 24.00 | 24.10 | mm   |                  |
| Module width        | 7.95  | 8.00  | 8.05  | mm   |                  |
| Module thickness    | 0.55  | 0.60  | 0.65  | mm   |                  |
| Microphone height   | 2.15  | 2.20  | 2.25  | mm   |                  |
| Microphone diameter | 5.95  | 6.00  | 6.05  | mm   |                  |
| Microphone spacing  | 10.45 | 10.50 | 10.55 | mm   | Center to center |

3.3 BOM (Bill of material):

| ITEM | PART NAME | MATERIAL                         | QTY | SUPPLIER |
|------|-----------|----------------------------------|-----|----------|
| 1    | Case      | AL                               | 2   | LOCAL    |
| 2    | Diaphragm | Polyester and<br>Stainless Steel | 2   | LOCAL    |
| 3    | Space     | Polyester                        | 2   | LOCAL    |
| 4    | P.C.B     | FR4                              | 2   | LOCAL    |
| 5    | IC        | FM101B                           | 2   | TAIWAN   |
| 6    | Сар       | 0201                             | 5   | JAPAN    |
| 7    | Plate     | PTFE and Metal                   | 2   | JAPAN    |
| 8    | Ring      | Brass                            | 2   | LOCAL    |
| 9    | Cavity    | PA66                             | 2   | LOCAL    |
| 10   | Screen    | NON-Fibercord                    | 2   | LOCAL    |
| 11   | Resistor  | 0201                             | 1   | TAIWAN   |

#### 3.4 2D drawing:



# Unit: mm

3.5 Packaging

Each minimum package unit of products shall be in a carton box and it shall be clearly marked with Part Number, quantity and outgoing inspection number. There shall be no mechanical damage on products during transportation and/or in storage.

外箱須標示最小包裝單位,並註明產品型號、數量及檢驗批號.,必須是物品儲藏或運輸過 程中可防止造成損傷的包裝.

## 4 Environmental Specifications

#### 4.1 Reliability Test

All tests are carried out on the same test batch in the order listed.

The sensitivity needs to be within  $\pm 3$  dBFs of initial sensitivity after 3 hours of operation at 20 °C.

#### **Table 7: Reliability Test**

|                   | After exposure to $85^{\circ}$ C for 200 hours, the sensitivity should be within $\pm 3$ dB from |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|
| T                 | the initial value.                                                                               |  |  |  |  |
| Temperature Test  | After exposure to $-40^{\circ}$ C for 200 hours the sensitivity should be within $\pm 3$ dB from |  |  |  |  |
|                   | the initial value.                                                                               |  |  |  |  |
| Humidita Test     | After exposure at 50°C and 90~95% relative humidity for 200 hours, the                           |  |  |  |  |
| Humidity Test     | sensitivity should be within $\pm 3$ dB from the initial sensitivity.                            |  |  |  |  |
| Tamananatum Cuala | After exposure at $-25^{\circ}$ C for 30 minutes, at 20°C for 10 minutes, at +60°C for 30        |  |  |  |  |
| Temperature Cycle | minutes, at 20°C for 10 minutes, 5 cycles, the sensitivity to be within ±3dB from                |  |  |  |  |
| Test              | the initial sensitivity.                                                                         |  |  |  |  |
| Vibration Test    | To be no interference in operation after vibrations, 10Hz to 50Hz for 1 minute full              |  |  |  |  |
| Vibration Test    | amplitude 1.52mm, for 2 hours at 3 anises.                                                       |  |  |  |  |
| Dron Test         | To be no interference in operation after dropped to concrete floor each one time                 |  |  |  |  |
| Drop Test         | from 1-meter height at three directions in state of packing.                                     |  |  |  |  |

## 5 Terminology

Table 8: Terminology

~

| Term                | Definition                                                            |
|---------------------|-----------------------------------------------------------------------|
| Sensitivity         | Sensitivity represents how efficiency a microphone can                |
|                     | transform the sound pressure into electrical voltage. The unit is     |
|                     | dBFS/Pa. The sensitivity is output amplitude with mono tone           |
|                     | stimulus (frequency = 1 kHz. intensity = 94 dBSPL= 1 Pa).             |
| Digital Noise Floor | Digital noise floor is the output amplitude when                      |
|                     | environment is silent.                                                |
| dBFS (decibel       | This is unit of the digital microphone output intensity.              |
| relative to Full    | 0dBFS means the maximum output sound. The output format is            |
| Scale)              | PDM (Pulse density modulation). The HD CODEC would                    |
|                     | decimate the PDM data and converts it into 16bit PCM signal           |
|                     | (in 16kHz). 16 bit PCM signal can represent data in the range         |
|                     | from -32768 ~ +32767. A pure tone with 0dBFS intensity                |
|                     | would output a sine wave with peak output code =32767 and             |
|                     | valley output code = $-32768$ .                                       |
| SNR (Signal to      | Signal to noise ratio is defined as the ratio between signal          |
| Noise Ratio)        | power and noise power. The power is measured for $100$ Hz ~ $7.2$     |
|                     | kHz. SNR= Sensitivity (dBFS) – Digital noise floor (dBFS).            |
| Sound Pressure      | The sound (speech, music) is conducted through air.                   |
| Level (SPL)         | Human heard the sound by sensing the air pressure variation.          |
|                     | The MKS unit of air pressure is Pa (Pascal).                          |
|                     | For convenience, scientists define another unit to represent          |
|                     | the sound pressure. It is called SPL. SPL is also another kind of     |
|                     | unit for pressure. 1 Pa = 94 dB SPL.                                  |
| THD (Total          | To measure the THD, the FFT of the DATA output is recorded.           |
| Harmonic            | Input signal is single tone (1 kHz) and amplitude is specified.       |
| Distortion)         | The measured power $(P_1)$ for 1kHz is called base band power.        |
|                     | The measured power $(P_N)$ for N kHz is called harmonic power.        |
|                     | THD can be calculated by dividing the sum of harmonic power           |
|                     | by base band power.                                                   |
|                     | $THD = 100 \times \left[\frac{\sum_{N=2\sim7} P_N}{P_1}\right]^{0.5}$ |