

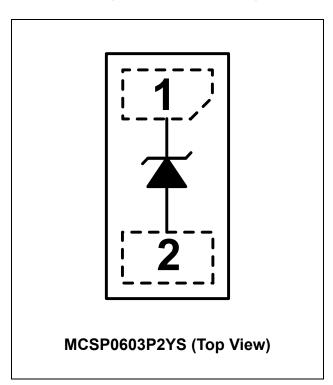
Features

- ESD protection for 1 line with uni-directional
- Provide transient protection for each line to IEC 61000-4-2 (ESD) ±30kV (air / contact)
 IEC 61000-4-4 (EFT) ±80A (5/50ns)
 IEC 61000-4-5 (Lightning) 20A (8/20µs)
- Suitable for, 6V and below, operating voltage applications
- 0201 small MCSP package saves board space
- Protect one I/O line or one power line
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part

Applications

- Power supply protection
- OLED
- Small panel modules
- Handheld portable applications
- Low speed data or control line protection
- Peripherals
- Consumer electronics

Description


AZ5A16-01M is a design which includes a uni-directional surge rated clamping cell to protect one power line, or one control line, or one low speed data line in an electronic system. The AZ5A16-01M has been specifically designed to protect sensitive components which are connected to power and control lines from

over-voltage damage caused by Electrostatic Discharging (ESD), Electrical Fast Transients (EFT), Lightning, and Cable Discharge Event (CDE).

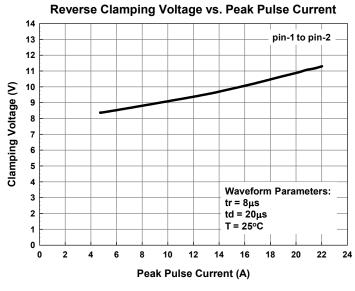
AZ5A16-01M is a unique design which includes proprietary clamping cell in a single package. During transient conditions, the proprietary clamping cell prevents over-voltage on the power line or control/data lines, protecting any downstream components.

AZ5A16-01M may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge).

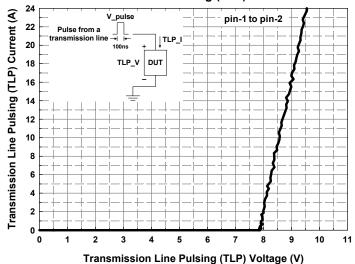
Circuit Diagram / Pin Configuration

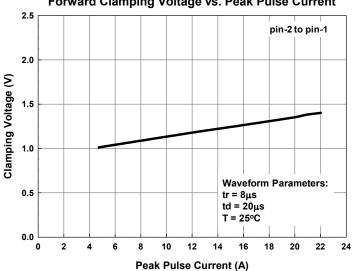
Specifications

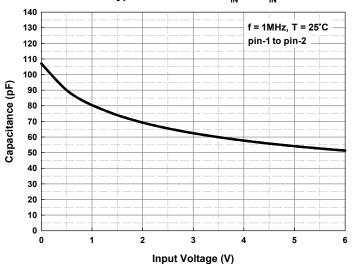
Absolute Maximum Ratings (T _A = 25°C, unless otherwise specified)				
Parameter	Symbol	Rating	Unit	
Peak Pulse Current (t _p =8/20μs)	I _{PP}	20	Α	
Operating Voltage	V_{DC}	6.6	V	
ESD per IEC 61000-4-2 (Air)	V _{ESD-1}	±30	1417	
ESD per IEC 61000-4-2 (Contact)	V_{ESD-2}	±30	kV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	


Electrical Characteristics						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reverse Stand-Off Voltage	V_{RWM}	Pin-1 to pin-2, T=25 °C.			6	V
Reverse Leakage Current	I _{Leak}	V_{RWM} = 6V, T=25 °C, pin-1 to pin-2.			0.1	μΑ
Reverse Breakdown Voltage	V_{BV}	I_{BV} = 1mA, T=25 °C, pin-1 to pin-2.	7	7.8	8.7	V
Forward Voltage	V _F	I_F = 15mA, T=25 °C, pin-2 to pin-1.	0.5		1	V
Surge Clamping	V _{CL-surge}	$I_{PP} = 5A$, $t_p = 8/20\mu s$, $T=25^{\circ}C$.		8.5	9.2	V
Voltage		$I_{PP} = 20A$, $t_p = 8/20\mu s$, $T=25^{\circ}C$.		11		
ESD Clamping Voltage (Note 1)	V_{clamp}	IEC 61000-4-2 +8kV (I_{TLP} = 16A), contact mode, T=25 °C, pin-1 to pin-2.		9		V
ESD Dynamic Turn-on Resistance	R _{dynamic}	IEC 61000-4-2 0~+8kV, T=25 °C, contact mode, pin-1 to pin-2.		0.08		Ω
Channel Input Capacitance	C _{IN}	$V_R = 0V$, $f = 1MHz$, pin-1 to pin-2, $T=25$ °C.		110	140	pF

Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.


TLP conditions: Z_0 = 50 Ω , t_p = 100ns, t_r = 1ns.


Typical Characteristics



Forward Clamping Voltage vs. Peak Pulse Current

Typical Variation of C_{IN} vs. V_{IN}

Applications Information

The AZ5A16-01M is designed to protect one line against system ESD / EFT / Lightning pulses by clamping it to an acceptable reference.

The usage of the AZ5A16-01M is shown in Fig. 1. Protected lines, such as data lines, control lines, or power lines, are connected to pin 1. The pin 2 should be connected directly to a ground plane on the board. All path lengths connected to the pins of AZ5A16-01M should be kept as short as possible to minimize parasitic inductance in the board traces.

In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

- Minimize the path length between the protected lines and the AZ5A16-01M.
- Place the AZ5A16-01M near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

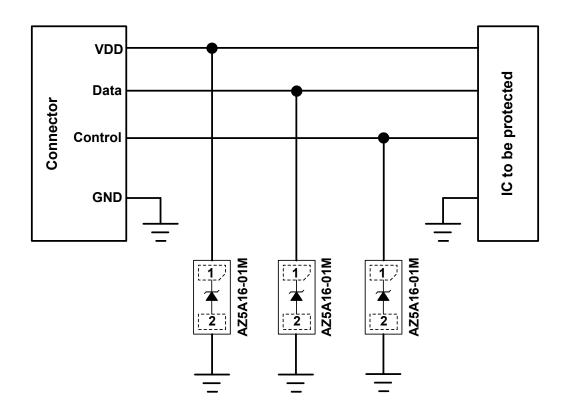
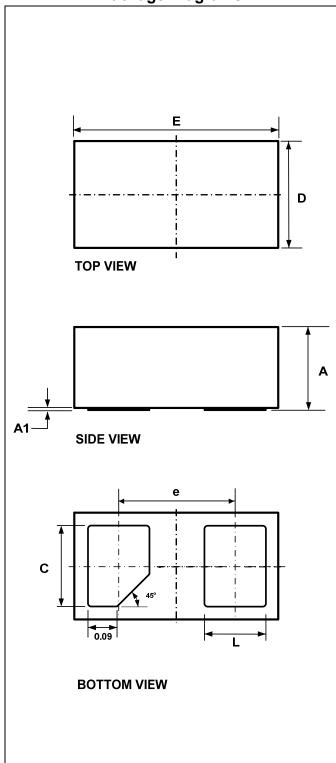



Fig. 1

Mechanical Details MCSP0603P2YS

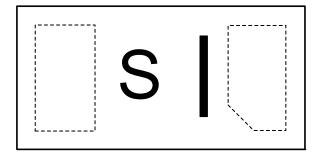
Package Diagrams



Package Dimensions

SYMBOL	MILLIMETERS			
STIVIDUL	MIN.	NOM.	MAX.	
E	0.615	0.630	0.645	
D	0.315	0.330	0.345	
Α	0.235	0.250	0.265	
A 1	0.005	0.015	0.050	
L	0.170	0.190	0.210	
С	0.230	0.250	0.270	
е		0.360 BSC		

Land Layout


Unit: mm

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

Marking Code

S= Device Code

Part Number	Marking Code
AZ5A16-01M.R7G (Green Part)	S

Note: Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Type	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ5A16-01M.R7G	Green	T/R	7 inch	15,000/reel	4 reels = 60,000/box	6 boxes = 360,000/carton

Revision History

Revision	Modification Description
Revision 2022/01/27	Formal Release.