

160MHz, 1.5nV/ \sqrt{Hz} , Operational Amplifier

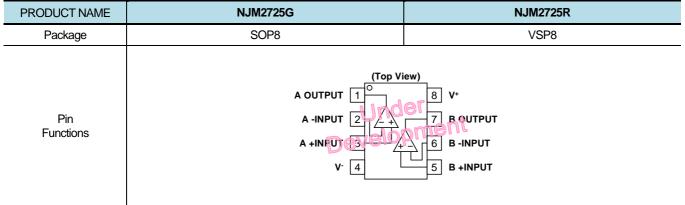
■ FEATURES (V ⁺ = 5V, V ⁻ = 0V, Typical)	value)
• GBW	160MHz
 Low Noise (f = 100kHz) 	1.5nV/√Hz
 Input Offset Voltage 	1mV max
Supply Voltage	4V to 10V
Common-Mode Input Voltage Range	1.5V to 4V
• High-level Output Voltage ($R_L = 1k\Omega$)	1.3V to 3.5V
Supply Current	4mA/ch
 Operating Temperature 	-40°C to 125°C
Slew Rate	15V/µs
 Stable Gain ≥ 2 	·
Package	SOP8
C C	VSP8

■ APPLICATIONS

- Low Noise Instrumentation Front End
- Ultrasound Preamp
- High Speed Low Noise Active Filter
- ADC Input Buffer Amplifier
- Sensor Interface

DESCRIPTION

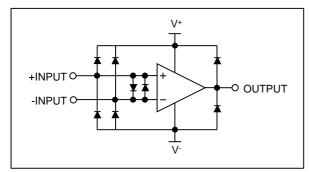
The NJM2725 is a dual high speed voltage feedback operational amplifier designed for ease of use in a high speed and low noise applications.


The combination of 1.5nV/√Hz voltage noise and 160MHz bandwidth makes the NJM2725 suitable for ultra-small signal and high frequency applications such as high speed photosensors, ultrasound sensors, active filters and other wideband applications. NJM2725 can be easily configured as a low noise amplifier, and it can also be used as a high performance ADC front end in combination with rail-to-rail op amps.

NJM2725 is stable for Gain \geq 2 or Gain \leq -1. Packages for this device is the 8pin SOP and the 8pin MSOP8 (VSP8) and is offered in the extended industrial temperature grade of -40°C to 125°C.

New Japan Radio Co., Ltd.

■ PIN CONFIGURATIONS


■ PRODUCT NAME INFORMATION

<u>NJM2725</u>	<u>R</u>	<u>(TE1)</u>
		L
Part Number	Package	Taping Form

ORDERING INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs)
NJM2725G (TE2)	SOP8	Yes	Yes	Pure Sn	2725	88	2500
NJM2725R (TE1)	MSOP8 (VSP8)	Yes	Yes	Sn2Bi	2725	21	2000

BLOCK DIAGRAM

New Japan Radio Co., Ltd. -www.njr.com

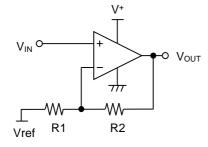
■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V+ – V-	11	V
Input Voltage (1)	VIN	V ⁻ – 0.3 to V ⁺ + 0.3	V
Input Current (1)	lin	1	mA
Differential Input Voltage ⁽²⁾	VID	±1.2	V
Output Short-Circuit Duration ⁽³⁾		Continuous	
Power Dissipation ($T_a = 25^{\circ}C$)		2-Layer / 4-Layer ⁽⁴⁾	
SOP8 MSOP8 (VSP8)	PD	690 / 1000 500 / 660	mW
Storage Temperature	T _{stg}	-65 to 150	°C
Junction Temperature	Tj	150	°C

(1) Input voltages outside the supply voltage will be clamped by ESD protection diodes. If the input voltage exceeds the supply voltage, the input current must be limited 1 mA or less by using a restriction resistance.

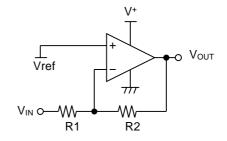
(2) Differential voltage is the voltage difference between +INPUT and -INPUT.

(3) Short-circuit can cause excessive heating and destructive dissipation.


(4) 2-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4).

4-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4), internal Cu area: 74.2 mm × 74.2 mm.

RECOMMENDED OPERATING CONDITIONS


PARAMETER	SYMBOL	CONDITIONS	VALUE	UNIT
Supply Voltage	V+ – V-		4 to 10	V
Operating Temperature	T _{opr}		-40 to 125	°C

■ TYPICAL APPLICATIONS

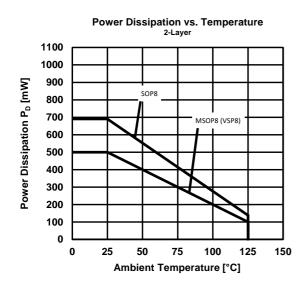
Non-inverting amplifier

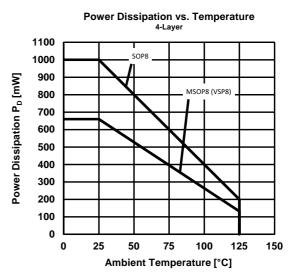
Stable Gain ≥ 2

Inverting amplifier Stable Gain ≤ -1

■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS						
Input Offset Voltage	V _{IO}		-	0.5	1	mV
Input Bias Current	lв		-	4.6	10	μA
Input Offset Current	lio		-	0.5	5	μA
Input Offset Voltage Drift	$\Delta V_{IO}/\Delta T$		-	1	-	µV/°C
Input Resistance	Rıℕ		-	TBD	-	Ω
Input Capacitance	CIN		-	TBD	-	pF
Open-Loop Voltage Gain	Av	$V_0 = 1.5V$ to 3.5V	90	105	-	dB
Common-Mode Rejection Ratio	CMR	V _{COM} = V _{ICM} min to V _{ICM} max	70	90	-	dB
Common-Mode Input Voltage Range	VICM	CMR ≥ CMR min	(V [−]) + 1.5	-	(V+) - 1	V
OUTPUT CHARACTERISTICS		·				
High-level Output Voltage	Vон	$R_L = 1k\Omega$ to V ⁺ /2	(V+) - 1.5	TBD	-	V
Low-level Output Voltage	V _{OL}	$R_L = 1k\Omega$ to V ⁺ /2	-	TBD	(V ⁻) + 1.3	V
		Sourcing, $V_0 = 3.5V$	-	30	-	mA
Output Current	lo	Sinking, $V_0 = 1.5V$	-	30	-	mA
POWER SUPPLY		·				
Supply Current per Amplifier	ISUPPLY	No signal	-	4	5.8	mA
Supply Voltage Rejection Ratio	SVR	V ⁺ = 4 to 10V	80	95	-	dB
AC CHARACTERISTICS (Gain = 2)						
Slew Rate	SR		-	15	-	V/µs
Gain Bandwidth Product	GBW	f = 1MHz	-	160	-	MHz
Settling Time 0.1%	ts		-	TBD	-	μs
Gain Margin	Gм	$C_L = 50 pF$	-	10	-	dB
Phase Margin	Фм	C _L = 50pF	-	60	-	deg
Total Harmonic Distortion + Noise	THD+N		-	TBD	-	%
Equivalent Input Noise Voltage	en	f = 100kHz	-	1.5	-	nV/√Hz
Equivalent Input Noise Current	In	f = 100kHz	-	1.5	-	pA/√Hz
Channel Separation	CS	f = 1MHz	-	TBD	-	dB


• *New Japan Radio Co., Ltd.* — www.njr.com

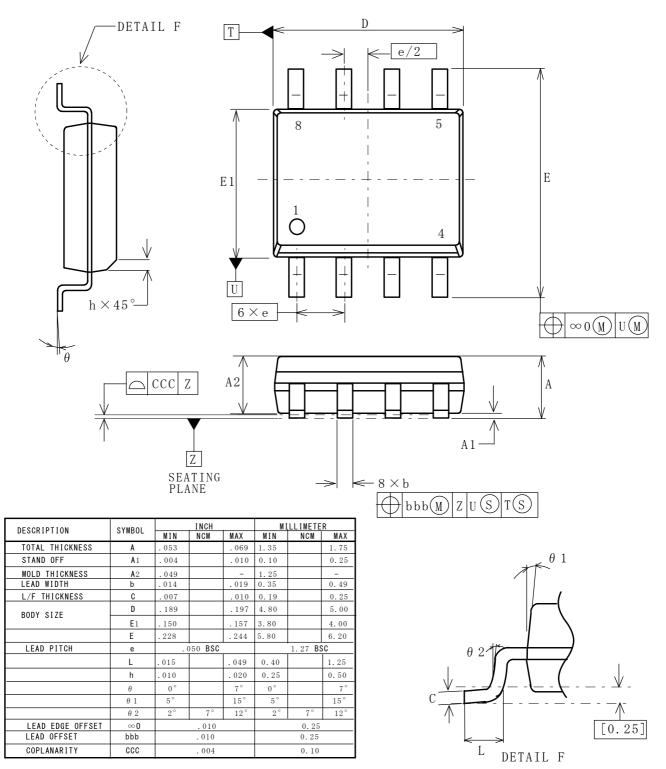

■ THERMAL CHARACTERISTICS

PACKAGE	SYMBOL	VALUE	UNIT
Junction-to-Ambient Thermal Resistance		2-Layer/4-Layer ⁽⁴⁾	
SOP8 MSOP8 (VSP8)	θ _{ja}	181 / 125 250 / 189	°C/W
Junction-to-Top of Package Characterization Parameter		2-Layer/4-Layer ⁽⁴⁾	
SOP8 MSOP8 (VSP8)	Ψjt	49 / 43 62 / 53	°C/W

(4) 2-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 2-layer FR-4). 4-Layer: Mounted on glass epoxy board (76.2 mm × 114.3 mm × 1.6 mm: based on EIA/JEDEC standard, 4-layer FR-4), internal Cu area: 74.2 mm × 74.2 mm.

■ POWER DISSIPATION vs. AMBIENT TEMPERATURE

New Japan Radio Co., Ltd. -www.njr.com



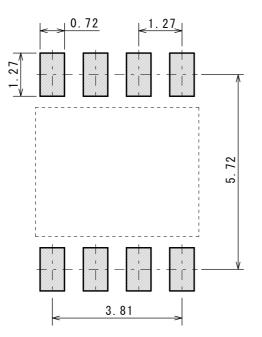
SOP8

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Unit: mm

■ PACKAGE DIMENSIONS

New Japan Radio Co., Ltd.


NJM2725

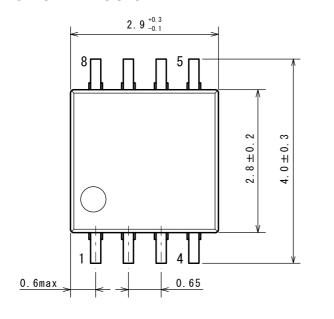
SOP8

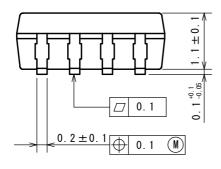
PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Unit: mm

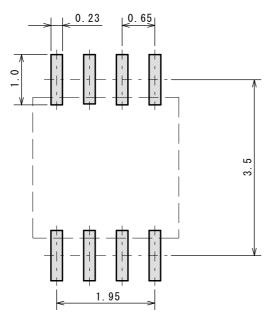
■ EXAMPLE OF SOLDER PADS DIMENSIONS

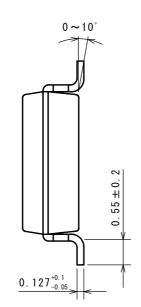
New Japan Radio Co., Ltd. -


NJM2725

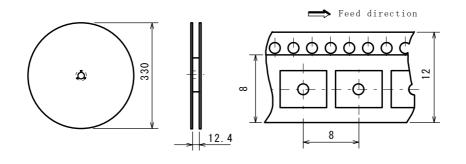

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Unit: mm

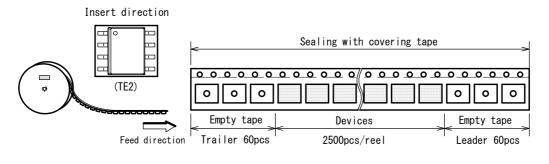

■ PACKAGE DIMENSIONS


MSOP8 (VSP8) JEDEC MO-187-DA

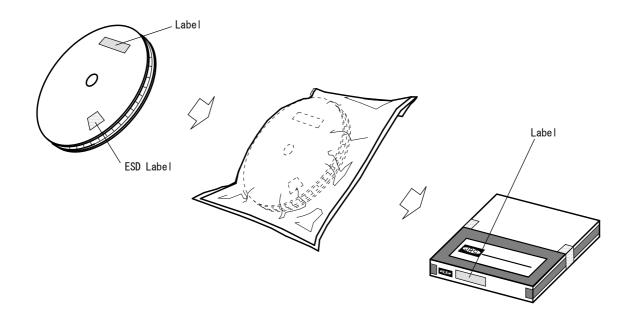
■ EXAMPLE OF SOLDER PADS DIMENSIONS


SOP8

PACKING SPEC


PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

Unit: mm

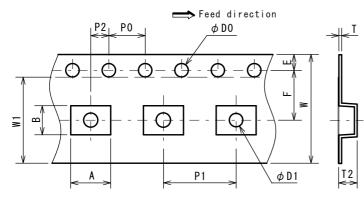

REEL DIMENSIONS / TAPING DIMENSIONS

TAPING STATE

PACKING STATE

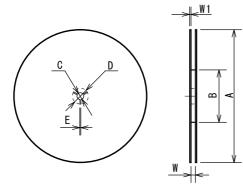
New Japan Radio Co., Ltd.-

NJM2725

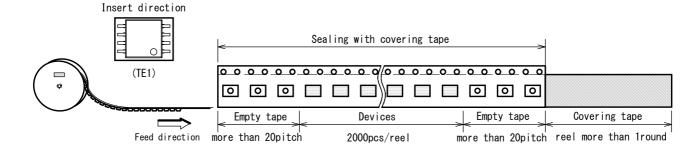

MSOP8 (VSP8) MEET JEDEC MO-187-DA

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

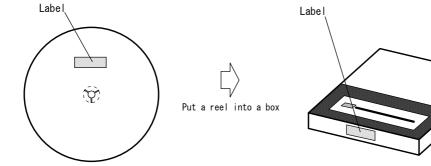
Unit: mm


PACKING SPEC

TAPING DIMENSIONS


SYMBOL	DIMENSION	REMARKS
A	4.4	BOTTOM DIMENSION
В	3.2	BOTTOM DIMENSION
DO	1.5 ^{+0.1}	
D1	1.5 ^{+0.1}	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.05	
T	0.30±0.05	
T2	2.0 (MAX.)	
W	12.0±0.3	
W1	9.5	THICKNESS 0.1max

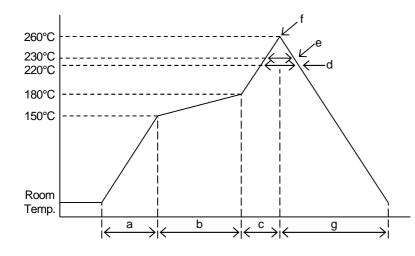
REEL DIMENSIONS



SYMBOL	DIMENSION
Α	ϕ 254 ± 2
В	$\phi 100 \pm 1$
С	φ 13±0.2
D	φ 21±0.8
E	2±0.5
W	13.5±0.5
W1	2.0±0.2

TAPING STATE

PACKING STATE



New Japan Radio Co., Ltd.

RECOMMENDED MOUNTING METHOD

INFRARED REFLOW SOLDERING PROFILE

а	Temperature ramping rate	1 to 4°C/s
Pre-heating temperature		150 to 180°C
U	Pre-heating time	60 to 120s
С	Temperature ramp rate	1 to 4°C/s
d	220°C or higher time	shorter than 60s
е	230°C or higher time	shorter than 40s
f	Peak temperature	lower than 260°C
g	Temperature ramping rate	1 to 6°C/s

The temperature indicates at the surface of mold package.

DATE	REVISION	CHANGES	
September 7, 2020	Ver.0.0	Initial Release	
October 5, 2020	Ver.0.1	Corrected unit of supply current on Electrical Characteristics.	
April 30, 2021	Ver.0.2	Added typical applications on Recommended Operating Conditions. Updated TBD of open-loop voltage gain and output current on Electrical Characteristics.	

New Japan Radio Co., Ltd. -www.njr.com

[CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights. All other trademarks mentioned herein are the property of their respective companies.
- 3. To ensure the highest levels of reliability, NJR products must always be properly handled. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- 4. NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Automobile, airplane, railroad, ship, etc.)
 - Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

New Japan Radio Co., Ltd.