

### **FEATURES**

### PRODUCT APPEARANCE

- ➤ 3.0~5.5V voltage ranges, half-duplex
- ➤ ESD protection for RS-485 I/O pins ±15kV, Human Body Model
- $\triangleright$  Bus fault tolerance and withstand voltage reach  $\pm 15$ V
- Driver short-circuit output protection
- Overtemperature protection function
- Low power shutdown function
- Receiver open-circuit failure protection
- > Strong anti-noise ability
- > Integrated transient voltage suppression function
- Data transmission up to 16Mbps in an electric noise environment



Provide Green and Environmentally Friendly Lead-free package

### DESCRIPTION

SIT65176B is a RS-485 transceiver with  $3.0V\sim5.5V$  wide power supply, bus port ESD protection capacity of over 15kV HBM, bus withstand voltage range of  $\pm15V$ , half duplex, low power consumption, and fully meet the requirements of TIA / EIA-485 standard.

SIT65176B includes a driver and a receiver, both of which can be enabled and closed independently. When both are disabled, both the driver and the receiver output are high resistance state. It can realize error-free data transmission up to 14Mbps.

SIT65176B has a working voltage range of 3.0~5.5V, and has the functions of fail-safe, overtemperature protection, current-limiting protection, over-voltage protection, etc.

### PIN CONFIGURATION



Fig 1 SIT65176B pin configuration



## PIN DESCRIPTION

| PIN | SYMBOL | DESCRIPTION                                                                                                                                                                            |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RO     | Receiver output. When /RE is low, if A-B\ge 200 mV, then RO=high. If A-B\le -200 mV, then RO=low.                                                                                      |
| 2   | /RE    | Receiver output enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.                                 |
| 3   | DE     | Driver output enable.  Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive /RE high and DE low to enter low-power shutdown mode.            |
| 4   | DI     | Driver input.  With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low. |
| 5   | GND    | Ground.                                                                                                                                                                                |
| 6   | A      | Non-inverting receiver input and non-inverting driver output.                                                                                                                          |
| 7   | В      | Inverting receiver input and inverting driver output.                                                                                                                                  |
| 8   | VCC    | Positive supply.                                                                                                                                                                       |

# LIMITING VALUES

| PARAMETER                        | SYMBOL             | VALUE        | UNIT |
|----------------------------------|--------------------|--------------|------|
| Supply Voltage                   | VCC                | +7           | V    |
| Control Input Voltage            | /RE, DE, DI        | -0.3~VCC+0.5 | V    |
| Input Voltage on the<br>Bus side | A, B               | -15~+15      | V    |
| Receiver Output<br>voltage       | RO                 | -0.3~VCC+0.5 | V    |
| Operating<br>Temperature Range   | Та                 | -40~85       | °C   |
| Storage Temperature<br>Range     | $T_{\mathrm{stg}}$ | -55~150      | °C   |
| Continuous Power                 | SOP8               | 470          | mW   |



| PARAMETER   | SYMBOL | VALUE | UNIT |
|-------------|--------|-------|------|
| Dissipation | MSOP8  | 830   | mW   |
|             | DIP8   | 700   | mW   |

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

# DRIVER DC ELECTRICAL CHARACTERISTICS

| PARAMETER                                                           | SYMBOL                  | CONDITION                                         | MIN. | TYP. | MAX. | UNIT |
|---------------------------------------------------------------------|-------------------------|---------------------------------------------------|------|------|------|------|
| Differential output<br>voltage (no load)                            | $ m V_{OD1}$            |                                                   | 2.5  |      | 5.5  | V    |
| Differential output                                                 | $ m V_{OD2}$            | Fig 2, RL = 54 $\Omega$ , VCC=3.3V                | 1.5  | 1.8  | VCC  | V    |
| voltage                                                             | V OD2                   | Fig 2, RL = 54 $\Omega$ , VCC=5V                  | 1.5  | 3    | VCC  | v    |
| Change in<br>magnitude of<br>differential output<br>voltage (NOTE1) | $\Delta { m V}_{ m OD}$ | $\underline{\text{Fig 2}}$ , RL = 54 $\Omega$     |      |      | 0.2  | V    |
| Common-mode output voltage                                          | V <sub>OC</sub>         | $\underline{\text{Fig 2}}, \text{RL} = 54 \Omega$ |      |      | 3    | V    |
| Change in magnitude of common-mode output voltage (NOTE1)           | $\Delta  m V_{OC}$      | $\underline{\text{Fig 2}}, \text{RL} = 54 \Omega$ |      |      | 0.2  | V    |
| High-level input<br>voltage                                         | $V_{ m IH}$             | DE, DI, /RE                                       | 2.0  |      |      | V    |
| Low-level input voltage                                             | $V_{\rm IL}$            | DE, DI, /RE                                       |      |      | 0.8  | V    |
| Logic input current                                                 | $I_{\mathrm{IN1}}$      | DE, DI, /RE                                       | -2   |      | 2    | μΑ   |
| Short-circuit output<br>current, short to<br>HIGH                   | $I_{OSD1}$              | short to 0V~12V                                   |      |      | 250  | mA   |
| Short-circuit output                                                | I <sub>OSD2</sub>       | short to -7V~0V                                   | -250 |      |      | mA   |



| PARAMETER                                    | SYMBOL | CONDITION | MIN. | TYP. | MAX. | UNIT |
|----------------------------------------------|--------|-----------|------|------|------|------|
| current, short to                            |        |           |      |      |      |      |
| Thermal-shutdown<br>threshold<br>temperature |        |           |      | 140  |      | °C   |
| Thermal-shutdown hysteresis temperature      |        |           |      | 20   |      | °C   |

(Unless otherwise stated, Temp= $T_{MIN}\sim T_{MAX}$ , Temp=25°C, VCC=5V).

NOTE1:  $\Delta V_{OD}$  and  $\Delta V_{OC}$  are the changes in  $V_{OD}$  and  $V_{OC},$  respectively, when the DI input changes state.

### RECEIVER DC ELECTRICAL CHARACTERISTICS

| PARAMETER                              | SYMBOL            | CONDITION                                              | MIN.    | TYP. | MAX. | UNIT |
|----------------------------------------|-------------------|--------------------------------------------------------|---------|------|------|------|
|                                        |                   | $DE = 0 V,$ $VCC=0 \text{ or } 5V,$ $V_{IN} = 12 V$    |         |      | 125  | μΑ   |
| Input current (A, B)                   | ${ m I}_{ m IN2}$ | $DE = 0 V,$ $VCC=0 \text{ or } 5V,$ $V_{IN} = -7 V$    | -100    |      |      | μΑ   |
| Positive-going input threshold voltage | $V_{\rm IT^+}$    | -7V≤V <sub>CM</sub> ≤12V                               |         |      | -10  | mV   |
| Negative-going input threshold voltage | V <sub>IT-</sub>  | -7V≤V <sub>CM</sub> ≤12V                               | -200    |      |      | mV   |
| Input hysteresis voltage               | $V_{ m hys}$      | -7V≤V <sub>CM</sub> ≤12V                               | 10      | 30   |      | mV   |
| HIGH-level output voltage              | $V_{\mathrm{OH}}$ | $I_{OUT} = -2.5 \text{mA},$ $V_{ID} = +200 \text{ mV}$ | VCC-1.5 |      |      | V    |
| LOW-level output<br>voltage            | $V_{OL}$          | $I_{OUT}$ = +2.5mA,<br>$V_{ID}$ = -200 mV              |         |      | 0.4  | V    |
| Three-state input leakage current      | $I_{OZR}$         | $0.4 \text{ V} < \text{V}_{\text{O}} < 2.4 \text{ V}$  |         |      | ±1   | μΑ   |
| Receiver input resistance              | R <sub>IN</sub>   | -7V≤V <sub>CM</sub> ≤12V                               | 96      |      |      | kΩ   |
| Receiver output short-circuit current  | $I_{OSR}$         | 0 V≤V <sub>0</sub> ≤VCC                                | ±8      |      | ±90  | mA   |

(Unless otherwise stated, Temp= $T_{MIN}\sim T_{MAX}$ , Temp= $25^{\circ}C$ ).



# SUPPLY CURRENT

| PARAMETER        | SYMBOL           | CONDITION MIN                   |  | TYP. | MAX. | UNIT |
|------------------|------------------|---------------------------------|--|------|------|------|
|                  | Iccı             | /RE=0V,<br>DE=0V, VCC=3.3V      |  | 240  | 650  | μΑ   |
|                  |                  | /RE=0V,<br>DE = 0 V, VCC=5V     |  | 270  | 750  | μΑ   |
| Supply current   | I <sub>CC2</sub> | /RE=VCC,<br>DE=VCC,<br>VCC=3.3V |  | 250  | 650  | μΑ   |
|                  |                  | /RE=0V, DE = 0 V,<br>VCC=5V     |  | 280  | 750  | μΑ   |
| Shutdown current | $ m I_{SHDN}$    | /RE=VCC, DE=0V,<br>VCC=3.3V     |  | 0.2  | 10   | μΑ   |
|                  |                  | /RE=VCC, DE=0V,<br>CC=5V        |  | 0.2  | 10   | μΑ   |

# DRIVER SWITCHING CHARACTERISTICS

| PARAMETER                                      | SYMBOL           | CONDITION                                                                        | MIN. | ТҮР. | MAX. | UNIT |
|------------------------------------------------|------------------|----------------------------------------------------------------------------------|------|------|------|------|
| Differential-output<br>delay time              | t <sub>DD</sub>  | $R_{\text{DIFF}} = 60 \Omega,$                                                   |      | 15   | 32   | ns   |
| Differential-output transition time            | t <sub>TD</sub>  | $C_{L1}=C_{L2}=100pF$<br>(Fig 3& Fig 4)                                          |      | 8    | 20   | ns   |
| Drive propagation<br>delay from low to<br>high | t <sub>PLH</sub> |                                                                                  |      | 18   | 40   | ns   |
| Drive propagation<br>delay from low to<br>high | $t_{ m PHL}$     | $R_{DIFF} = 27 \Omega,$ $(\underline{\text{Fig 3}} \& \underline{\text{Fig 4}})$ |      | 18   | 40   | ns   |
| t <sub>PLH</sub> -t <sub>PHL</sub>             | $t_{PDS}$        |                                                                                  |      | 2    | 6    | ns   |
| Output enable time<br>to high level            | t <sub>РZН</sub> | $R_L = 110\Omega$ ,                                                              |      |      | 55   | ns   |
| Output enable time to low level                | $t_{PZL}$        | ( <u>Fig 5</u> & <u>Fig 6</u> )                                                  |      |      | 55   | ns   |
| Input disable time from low level              | $t_{PLZ}$        | $R_L = 110\Omega$ ,                                                              |      |      | 85   | ns   |
| Input disable time from high level             | t <sub>PHZ</sub> | ( <u>Fig 5</u> & <u>Fig 6</u> )                                                  |      |      | 85   | ns   |



| PARAMETER                                         | SYMBOL           | CONDITION                                                                     | MIN. | ТҮР. | MAX. | UNIT |
|---------------------------------------------------|------------------|-------------------------------------------------------------------------------|------|------|------|------|
| Output enable time<br>to high level<br>(shutdown) | t <sub>DSH</sub> | $R_{L} = 110\Omega,$ $(\underline{\text{Fig 5}} \& \underline{\text{Fig 6}})$ |      | 20   | 100  | ns   |
| Output enable time<br>to low level<br>(shutdown)  | t <sub>DSL</sub> | $R_{L} = 110\Omega,$ $(\underline{\text{Fig 5}} \& \underline{\text{Fig 6}})$ |      | 20   | 100  | ns   |

# RECEIVER SWITCHING CHARACTERISTICS

| PARAMETER                                                | SYMBOL            | CONDITION                                               | MIN.                 | ТҮР. | MAX. | UNIT |
|----------------------------------------------------------|-------------------|---------------------------------------------------------|----------------------|------|------|------|
| Propagation delay<br>time, low- to high-<br>level output | t <sub>RPLH</sub> |                                                         |                      | 40   | 70   | ns   |
| Propagation delay<br>time, high- to low-<br>level output | $t_{RPHL}$        | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) |                      | 40   | 70   | ns   |
| $ t_{RPLH} - t_{RPHL} $                                  | $t_{ m RPDS}$     |                                                         |                      | 3    | 8    | ns   |
| Output enable time<br>to low level                       | t <sub>RPZL</sub> | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) |                      | 15   | 40   | ns   |
| Output enable time<br>to high level                      | t <sub>RPZH</sub> | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) |                      | 15   | 40   | ns   |
| Output disable time from low level                       | $t_{PRLZ}$        | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) |                      | 25   | 55   | ns   |
| Output disable time from high level                      | $t_{PRHZ}$        | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) |                      | 25   | 55   | ns   |
| Output enable time<br>to high level<br>(shutdown)        | ${ m t_{RPSH}}$   | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) | C <sub>L</sub> =15pF |      | 500  | ns   |
| Output enable time<br>to low level<br>(shutdown)         | $t_{RPSL}$        | C <sub>L</sub> =15pF<br>( <u>Fig 7</u> & <u>Fig 8</u> ) |                      | 150  | 500  | ns   |
| Time to shutdown                                         | t <sub>SHDN</sub> | NOTE2                                                   | 50                   |      | 300  | ns   |

NOTE2: If the enable inputs are /RE=1 and DE=0 for less than 80ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 300ns, the device is guaranteed to have entered shutdown.



# **FUNCTION TABLE**

### **Driver Function**

| CONT | ROL | INPUT | PUT OUT     |   |  |
|------|-----|-------|-------------|---|--|
| /RE  | DE  | DI    | A           | В |  |
| X    | 1   | 1     | Н           | L |  |
| X    | 1   | 0     | L           | Н |  |
| 0    | 0   | X     | Z           | Z |  |
| 1    | 0   | X     | Z(shutdown) |   |  |

X=irrelevant; Z=high impedance.

### **Receiver Function**

| CONT | ΓROL | INPUT              | OUTPUT |
|------|------|--------------------|--------|
| /RE  | DE   | A-B                | RO     |
| 0    | X    | ≥-10mV             | Н      |
| 0    | X    | ≤-200mV            | L      |
| 0    | X    | Open/short circuit | Н      |
| 1    | X    | X                  | Z      |

X=irrelevant; Z=high impedance.

# **TEST CIRCUIT**

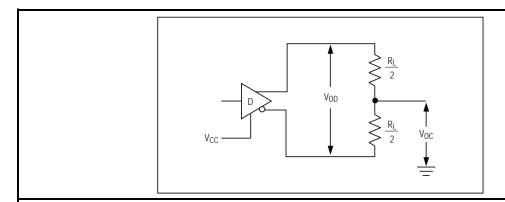
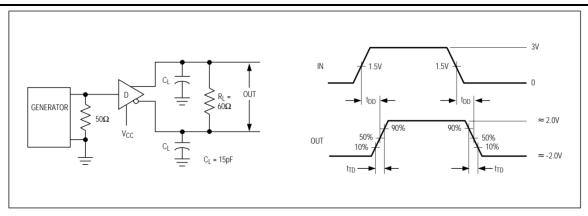




Fig 2 Driver DC test load



CL includes probe and stray capacitance (the same below).

Fig 3 Differential delay and transition time of driver



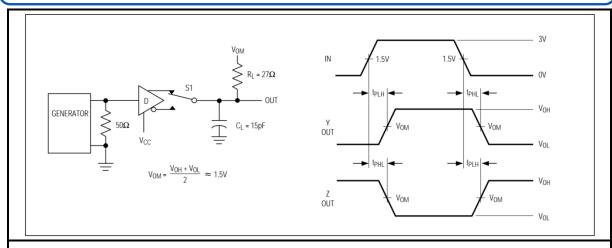



Fig 4 Driver propagation delay

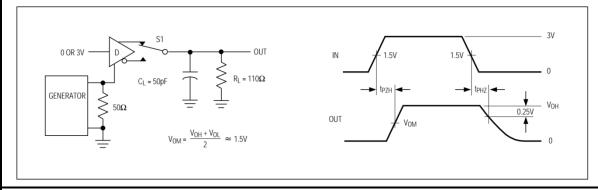



Fig 5 Driver enable and disable time

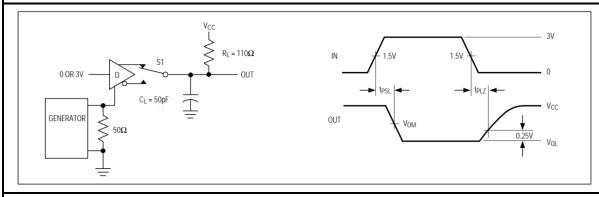



Fig 6 Driver enable and disable time

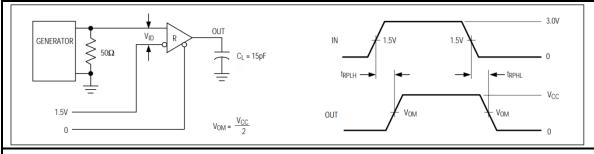
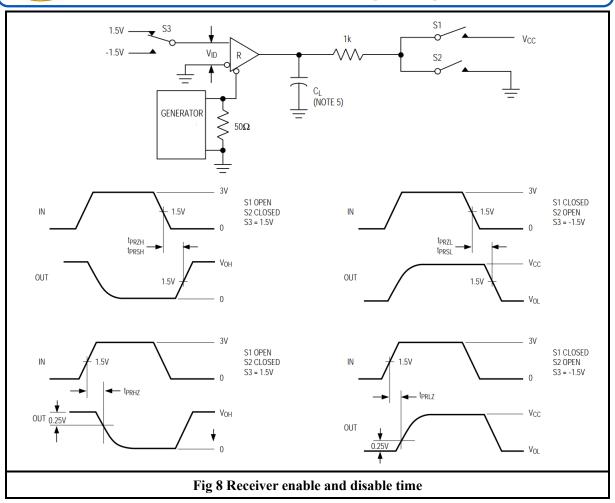




Fig 7 Receiver propagation delay test circuit







### ADDITIONAL DESCRIPTION

#### 1 Sketch

SIT65176B is a half-duplex high-speed transceiver with  $3.0V\sim5.5V$  wide power supply, bus port ESD protection capacity of more than 15kV HBM, bus DC withstand voltage of more than  $\pm15V$ , used for RS-485/RS-422 communication, including a driver and receiver. It has the functions of fail-safe, over-voltage protection, over-current protection and over temperature protection. SIT65176B realizes error-free data transmission up to 16Mbps.

#### 2 Driver output protection

Tow mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, over-current protection, fast short circuit protection in the mode voltage range (refer to typical operating characteristics). Second, when the temperature of the tube core exceeds 140°C, the output of the driver is forced into the high resistance state.

### 3 Typical applications

**3.1 Bus Networking:** SIT65176B RS485 transceiver is designed for bidirectional data communication on multi-point bus transmission line. Fig 9 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4000 feet. In order to reduce reflection, terminal matching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible.

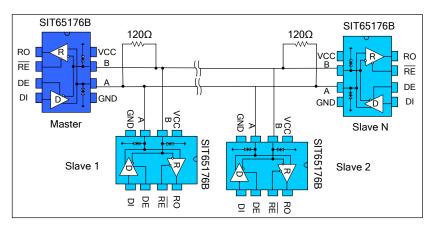



Fig 9 Bus type RS485 half-duplex communication network

**3.2 Hand in hand Networking:** also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The wiring mode is that the main control equipment and a plurality of slave control equipment form a handheld connection mode, as shown in <u>Fig 10</u>, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

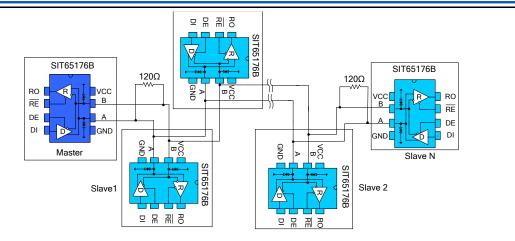
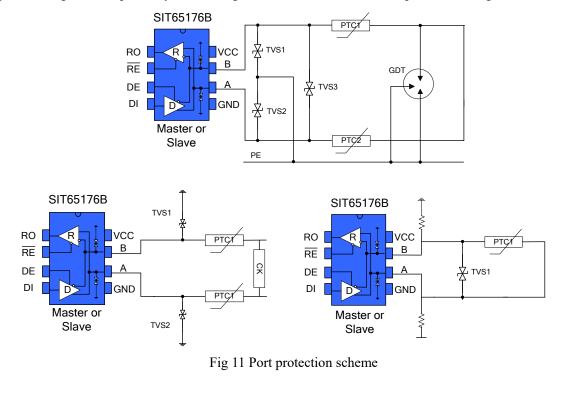
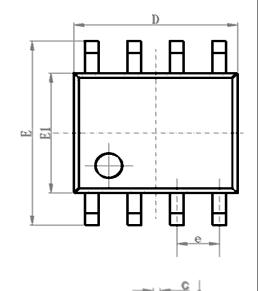
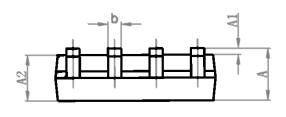
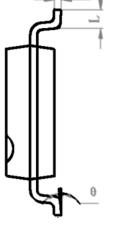




Fig 10 Hand in hand RS485 half-duplex communication network

**3.3 Bus port protection:** in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Fig 11 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A, B port to the protective ground, TVS devices in parallel with A, B port, thermistor in series with A,B port, gas discharge tube in parallel to the protective ground; the second is the scheme of three-level protection by connecting TVS in parallel with A,B port to the ground, thermistor in series with A,B port, and varistor in parallel with A, B port; the third is the scheme of three-level protection by connecting AB with pull-up or pull-down resistor to power and ground respectively, connecting TVS between A & B, A or B port connecting thermistor.



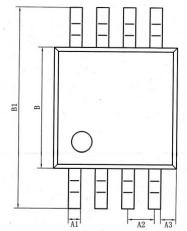



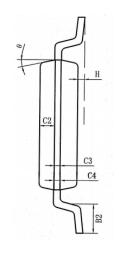


# **SOP8 DIMENSIONS**

#### PACKAGE SIZE

| PACKAGE SIZE |         |         |         |  |  |
|--------------|---------|---------|---------|--|--|
| SYMBOL       | MIN./mm | TYP./mm | MAX./mm |  |  |
| A            | 1.40    | -       | 1.80    |  |  |
| A1           | 0.10    | -       | 0.25    |  |  |
| A2           | 1.30    | 1.40    | 1.50    |  |  |
| b            | 0.38    | -       | 0.51    |  |  |
| D            | 4.80    | 4.90    | 5.00    |  |  |
| Е            | 5.80    | 6.00    | 6.20    |  |  |
| E1           | 3.80    | 3.90    | 4.00    |  |  |
| e            |         | 1.27BSC |         |  |  |
| L            | 0.40    | 0.60    | 0.80    |  |  |
| С            | 0.20    | -       | 0.25    |  |  |
| θ            | 0°      | -       | 8°      |  |  |





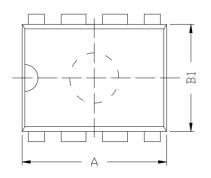



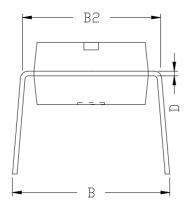


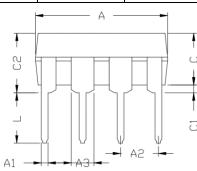

# MSOP8/8µMAX/VSSOP8 DIMENSIONS

| SYMBOL | MIN./mm | TYP./mm   | MAX./mm |
|--------|---------|-----------|---------|
| A      | 2.90    | 3.0       | 3.10    |
| A1     | 0.28    |           | 0.35    |
| A2     |         | 0.65TYP   |         |
| A3     |         | 0.375TYP  |         |
| В      | 2.90    | 3.0       | 3.10    |
| B1     | 4.70    |           | 5.10    |
| B2     | 0.45    |           | 0.75    |
| С      | 0.75    |           | 0.95    |
| C1     |         |           | 1.10    |
| C2     |         | 0.328 TYP |         |
| С3     |         | 0.152     |         |
| C4     | 0.15    |           | 0.23    |
| Н      | 0.00    |           | 0.09    |
| θ      |         | 12°TYP    |         |



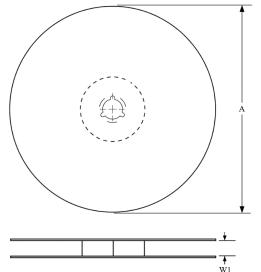


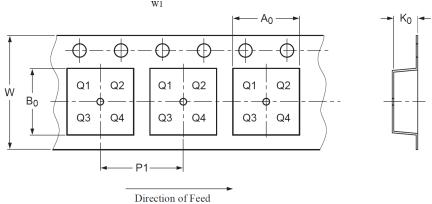


## **DIP8 DIMENSIONS**

### **PACKAGE SIZE**

|        | FACKAGE SIZE    |           |         |  |  |
|--------|-----------------|-----------|---------|--|--|
| SYMBOL | MIN./mm TYP./mm |           | MAX./mm |  |  |
| A      | 9.00            | 9.20      | 9.40    |  |  |
| A1     | 0.33 0.45       |           | 0.51    |  |  |
| A2     |                 | 2.54TYP   |         |  |  |
| A3     |                 | 1.525TYP  |         |  |  |
| В      | 8.40            | 8.70      | 9.10    |  |  |
| B1     | 6.20            | 6.40      | 6.60    |  |  |
| B2     | 7.32            | 7.32 7.62 |         |  |  |
| С      | 3.20            | 3.40      | 3.60    |  |  |
| C1     | 0.50            | 0.60 0.80 |         |  |  |
| C2     | 3.71            | 4.00 4.31 |         |  |  |
| D      | 0.20            | 0.28 0.36 |         |  |  |
| L      | 3.00            | 3.30      | 3.60    |  |  |








# TAPE AND REEL INFORMATION

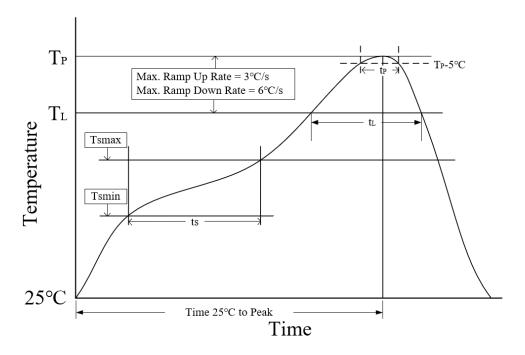


| Α0 | Dimension designed to accommodate the   |
|----|-----------------------------------------|
| AU | component width                         |
| В0 | Dimension designed to accommodate the   |
| В  | component length                        |
| K0 | Dimension designed to accommodate the   |
| K0 | component thickness                     |
| W  | Overall width of the carrier tape       |
| P1 | Pitch between successive cavity centers |



PIN1 is in quadrant 1

| Package<br>Type | Reel Diameter A (mm) | Tape width W1 (mm) | A0<br>(mm) | B0 (mm)   | K0<br>(mm) | P1 (mm)   | W<br>(mm)               |
|-----------------|----------------------|--------------------|------------|-----------|------------|-----------|-------------------------|
| SOP8            | 330                  | 12.5±0.20          | 6.50±0.1   | 5.30±0.10 | 2.05±0.1   | 8.00±0.1  | 12.00±0.1               |
| MSOP8           | 330                  | 12.5±0.20          | 5.33±0.10  | 3.40±0.10 | 1.53±0.10  | 8.00±0.10 | $12.00^{+0.30}_{-0.10}$ |


## ORDERING INFORMATION

| TYPE NUMBER  | PACKAGE            | PACKING       |
|--------------|--------------------|---------------|
| SIT65176BDR  | SOP8               | Tape and reel |
| SIT65176BDGK | MSOP8/VSSOP8/8μMAX | Tape and reel |
| SIT65176BP   | DIP8               | Tube          |

Tapered package is 2500 pcs/reel. DIP8 is packed with 50 pieces/tube in tubed packaging.



## **REFLOW SOLDERING**



| Parameter                                                                 | Lead-free soldering conditions |
|---------------------------------------------------------------------------|--------------------------------|
| Ave ramp up rate $(T_L \text{ to } T_P)$                                  | 3°C/second max                 |
| Preheat time ts<br>(T <sub>smin</sub> =150°C to T <sub>smax</sub> =200°C) | 60-120 seconds                 |
| Melting time t <sub>L</sub> (T <sub>L</sub> =217°C)                       | 60-150 seconds                 |
| Peak temp T <sub>P</sub>                                                  | 260-265°C                      |
| 5°C below peak temperature t <sub>P</sub>                                 | 30 seconds                     |
| Ave cooling rate ( $T_P$ to $T_L$ )                                       | 6°C/second max                 |
| Normal temperature 25°C to peak temperature T <sub>P</sub> time           | 8 minutes max                  |

### Important statement

SIT reserves the right to change the above-mentioned information without prior notice.



# **REVISION HISTORY**

| Version number | Data sheet status | Revision date |
|----------------|-------------------|---------------|
| V1.0           | Initial version.  | November 2022 |