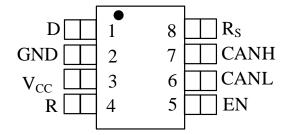


FEATURES

- > Operates with a single 3.3V supply
- ➤ Compatible with ISO 11898-2 standard
- \triangleright Bus pin ESD protection exceeds ± 16 kV HBM
- ➤ High input impedance allows for up to 120 nodes
- Adjustable driver transition times for improved emissions performance
- > Low current standby mode: 370μA typical
- Very low current sleep mode: 50nA typical
- > Designed for data rates up to 1Mbps
- > Thermal shutdown protection
- > Open circuit fail-safe design
- > Glitch free power up and power down protection for hot plugging applications

PRODUCT APPEARANCE

Provide green and environmentally friendly lead-free package


DESCRIPTION

The SIT65HVD234 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the 3.3V μ Ps, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	V_{cc}		3	3.6	V
Maximum transmission rate	1/t _{bit}	Non-return to zero code	1		Mbaud
CANH, CANL input or output voltage	V_{can}		-36	+36	V
Bus differential voltage	$V_{ m diff}$		1.5	3.0	V
Virtual junction temperature	T_{j}		-40	125	°C

PIN CONFIGURATION

PINNING

PIN	SYMBOL	DESCRIPTION
1	D	CAN transmit data input (LOW for dominant and HIGH for recessive bus states), also called TXD, driver input.
2	GND	Ground.
3	VCC	Transceiver 3.3V supply voltage.
4	R	CAN receive data output (LOW for dominant and HIGH for recessive bus states), also called RXD, receiver output.
5	EN	Enable input pin: EN=1, normal operation (high speed or standby mode); EN=0, low power sleep mode.
6	CANL	Low level CAN bus line.
7	CANH	High level CAN bus line.
8	R_{S}	Mode select pin: strong pull down to GND=high speed mode, strong pull up to V_{CC} =low power mode, $10k\Omega$ to $100k\Omega$ pull down to GND=slope control mode.

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V_{CC}	-0.3~+6	V
DC voltage on D/R pins	D, R	-0.5~VCC+0.5	V
Voltage range at any bus terminal (CANH, CANL)	CANL, CANH	-36~36	V
Transient voltage on pins CANH, CANL (test with 100Ω) See Fig 10	$ m V_{tr}$	-40~+40	V
Receiver output current	I_{O}	-11~11	mA
Storage temperature	$T_{ m stg}$	-40~150	°C
Virtual junction temperature	Tj	-40~125	°C
Welding temperature range		300	°C

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER ELECTRICAL DC CHARACTERISTICS

SYMBOL	PARAME	ΓER	CONDITION	MIN.	TYP.	MAX.	UNIT
V	output voltage	CANH	$VI=0V$, $R_S=0V$, $R_L=60\Omega$	2.45		VCC	V
$V_{O(D)}$	(Dominant)	CANL	(<u>Fig1</u> , <u>Fig 2</u>)	0.5		1.25	V
V	Differential of	output	$VI=0V$, $R_S=0V$, $R_L=60\Omega$ (Fig 1)	1.5	2	3	V
V _{OD(D)}	voltage (Don	ninant)	VI=0V, R_L =60 Ω , R_S =0V (Fig 3)	1.2	2	3	V
V	output voltage	CANH	$VI=3V, R_S=0V, R_L=60\Omega$		2.3		V
V _{O(R)}	(Recessive)	CANL	(<u>Fig 1</u>)		2.3		V
	Differential (outout	VI=3V, R _S =0V	-0.12		0.012	V
V _{OD(R)}	voltage (Reco	•	VI=3V, R _S =0V, NO LOAD	-0.5		0.05	V
I _{IH}	High-level inpu	t current	VI=2V	-30		30	μΑ
$I_{\rm IL}$	Low-level input	t current	VI=0.8V	-30		30	μΑ
			CANH=-7V	-250			
	Short-circuit	output	CANH=12V			1	
Ios	current	;	CANL=-7V	-1			mA
			CANL=12V			250	
Co	Output capacita	nce	See receiver				
			Sleep		0.05	2	μΑ
			Standby		370	600	μΑ
I_{CC}	Supply current		V _I =0V (Dominant), No load			6	mA
			V _I =VCC (Recessive), No load			6	mA

(If not otherwise specified, Vcc=3.3V $\pm 10\%$, Temp=T_{MIN} \sim T_{MAX}, Typical: VCC=+3.3V, Temp=25 °C)

DRIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Propagation delay	R=0, Short circuit (<u>Fig 4</u>)		35	85	
t PLH	time	R=10kΩ		70	125	ns
	(low-to-high-level)	R=100kΩ		500	870	

3.3V, Very Low Power Sleep Mode, High Speed CAN Transceiver

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Propagation delay	R=0, Short circuit (<u>Fig 4</u>)		70	120	
t PHL	tPHL time	R=10kΩ		130	180	ns
		R=100kΩ		870	1200	
	Pulse skew (t _{PLH} - t _{PHL})	R=0, Short circuit (<u>Fig 4</u>)		35		
t _{sk(p)}		R=10kΩ		60		ns
		R=100kΩ		370		
	7.00	R=0, Short circuit (<u>Fig 4</u>)	20		70	
tr	Differential output signal rise time	R=10kΩ	30		150	ns
	signal lise time	R=100kΩ	350		1400	
		R=0, Short circuit (<u>Fig 4</u>)	20		70	
tf	Differential output signal fall time	R=10kΩ	30		150	ns
	signal fall time	R=100kΩ	350		1400	

(If not otherwise specified, Vcc=3.3V $\pm 10\%$, Temp=T_{MIN} \sim T_{MAX}, Typical: VCC=+3.3V, Temp=25°C)

RECEIVER ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
\mathbf{V}_{IT^+}	Positive-going input threshold voltage	Table 1		750	900	mV
V _{IT} .	Negative-going input threshold voltage	Table 1	500	650		mV
V_{hys}	Hysteresis voltage	VIT+- VIT-		100		mV
V _{OH}	High-level output voltage	$-6V < V_{ID} < 500 \text{mV}$ $I_O = -8 \text{mA} (\underline{\text{Fig5}})$	2.4			V
Vol	Low-level output voltage	900mV <v<sub>ID<6V I_O=8mA (<u>Fig5</u>)</v<sub>			0.4	V
Ii		VIH=12V, VCC=0V	200		600	μΑ
Ii	D	VIH=12V, VCC=3.3V	150		500	μΑ
Ii	Bus input current	VIH=-7V, VCC=0V	-450		-130	μΑ
Ii		VIH=-7V, VCC=3.3V	-610		-150	μΑ
R _i	Bus input resistance	Corresponding standards of ISO 11898-2	20	35	50	kΩ

3.3V, Very Low Power Sleep Mode, High Speed CAN Transceiver

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
R_{diff}	Differential input resistance	Corresponding standards of ISO 11898-2	40		100	kΩ
Ci	Bus input capacitance	Corresponding standards of ISO 11898-2		40		pF
C _{diff}	Differential input capacitance	Corresponding standards of ISO 11898-2		20		pF

(If not otherwise specified, V_{CC}=3.3V±10%, Temp=T_{MIN}~T_{MAX}, Typical: VCC=+3.3V, Temp=25°C)

RECEIVER SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	ТҮР.	MAX.	UNIT
t _{PLH}	Propagation delay time (low-to-high-level)	Fig 6		35	60	ns
t _{PHL}	Propagation delay time (high-to-low-level)	Fig 6		35	60	ns
t_{sk}	Pulse skew	t _{PHL} - t _{PLH}		7		ns
t _r	Output signal rise time	Fig 6		2	5	ns
$\mathbf{t_f}$	Output signal fall time	Fig 6		2	5	ns

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C)

DEVICE SWITCHING CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
	Total loop delay,	R=0, Short circuit (<u>Fig 9</u>)		70	135	
t _(LOOP1)	$\mathbf{t}_{(LOOP1)}$ driver input to	R=10 kΩ		105	190	ns
receive	receiver output, recessive to dominant	R=100 kΩ		535	1000	
	Total loop delay,	R=0, Short circuit (Fig 9)		70	165	
$t_{(LOOP2)}$	driver input to	R=10 kΩ		105	190	ns
	receiver output, dominant to recessive	R=100 kΩ		535	1000	

(If not otherwise specified, V_{CC}=3.3V±10%, Temp=T_{MIN}~T_{MAX}, Typical: VCC=+3.3V, Temp=25°C)

OVER TEMPERATURE PROTECTION

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
$T_{j(sd)}$	Thermal shutdown temperature			155	170	°C

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C)

CONTROL-PIN CHARACTERISTICS

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
т	wake-up time from standby mode	R_S adds square wave $(\underline{Fig7})$		0.55	1.5	μs
T _{WAKE}	wake-up time from sleep mode	EN adds square wave (Fig 8)		1	5	μs
I_{RS}	Input current for high-speed	V _{RS} <1V	-450		0	μΑ
$ m V_{RS}$	Input voltage for standby/sleep	0 <v<sub>RS<v<sub>CC</v<sub></v<sub>	0.75V _{CC}		$V_{\rm CC}$	V
I_{off}	Power-off leakage current	V _{CC} =0V, V _{CANH} =V _{CANL} =5V	-250		250	μΑ

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C)

SUPPLY CURRENT

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Icc	Power consumption in sleep mode	EN=0, R _S =VCC or 0V, VI=VCC		0.05	2	μА
I_{CC}	Power consumption in standby mode	EN=VCC, R _S =VCC, V _I =VCC		370	600	μА
I _{CC}	Dominant power consumption	EN=VCC, V_i =0V, R_s =0V, LOAD=60 Ω		50	70	mA
I_{CC}	Recessive power consumption	$EN=VCC, \\ V_I=VCC, R_S=0V, \\ NO LOAD$			6	mA

 $(If not otherwise specified, V_{CC}=3.3V\pm10\%, Temp=T_{MIN}\sim T_{MAX}, Typical: VCC=+3.3V, Temp=25^{\circ}C)$

FUNCTION TABLE

Table 1 Receiver characteristics in common mode ($V_{(RS)}$ =1.2V)

V_{ID}	V _{CANH}	V _{CANL}	R OU	TPUT
900mV	-6.1V	-7V	L	
900mV	12V	11.1V	L	V
6V	-1V	-7V	L	V_{OL}
6V	12V	6V	L	
500mV	-6.5V	-7V	Н	
500mV	12V	11.5V	Н	
-6V	-7V	-1V	Н	V_{OH}
-6V	6V	12V	Н	
X	Open	Open	Н	

⁽¹⁾ H=High level; L=Low level; X=Irrelevant.

Table2.Driver Function

INPUTS			OUTPUTS		
D	EN	$\mathbf{R}_{\mathbf{S}}$	CANH	CANL	BUS STATE
L	Н	≤0.33V _{CC}	Н	L	Dominant
Н	X	≤0.33V _{CC}	Z	Z	Recessive
Open	X	X	Z	Z	Recessive
X	X	>0.75V _{CC}	Z	Z	Recessive
X	L or Open	X	Z	Z	Recessive

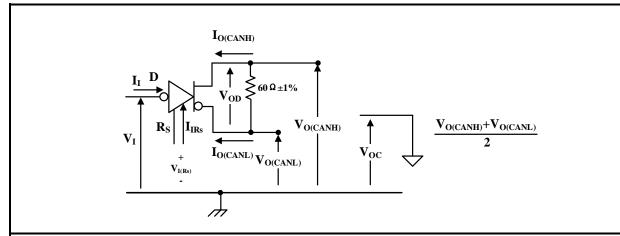
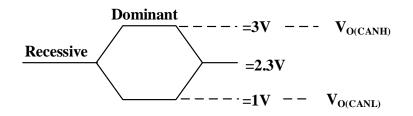
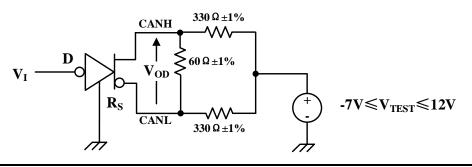
⁽¹⁾ H= High level; L=Low level; Z=High impedance.

Table3. Receiver Function

	OUTPUTS				
BUS STATE	VID=CANH-CANL	EN	R		
Dominant	V _{ID} ≥0.9V	Н	L		
Recessive	V _{ID} ≤0.5V or open	Н	Н		
?	0.5 <v<sub>ID<0.9V</v<sub>	Н	?		
X	X	L or open	Н		

 $^{(1) \} H=\!High \ level; \ L=\!Low \ level; \ ?=\!uncertain; \ X=\!Irrelevant.$

TEST CIRCUIT

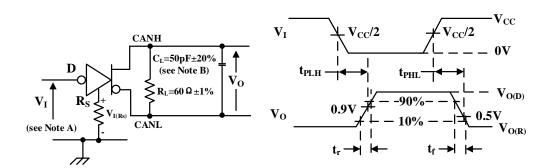
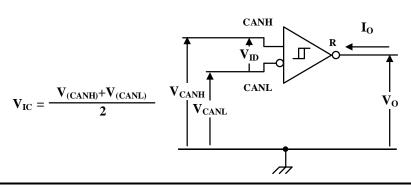
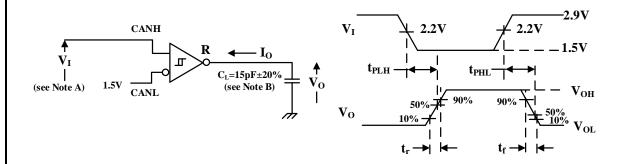
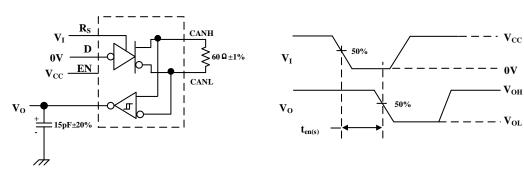

Fig.1 Driver voltage, current and test definition

Fig.2 Bus logic state voltage definitions

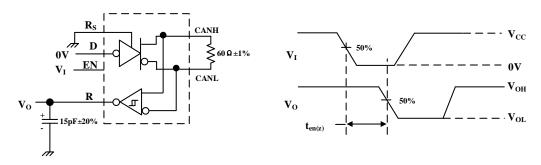
- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125kHz, 50% duty cycle, t_r<6ns, t_r<6ns, Z₀=50 Ω .
- B. C_L includes fixture and instrumentation capacitance, the error is within 20%.

Fig.4 Driver test circuit and waveforms


Fig.5 Receiver voltage and current definitions

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125kHz, 50% duty cycle, t_r<6ns, t_r<6ns, Zo= 50Ω
- B. C_L includes fixture and instrumentation capacitance, the error is within 20%.


Fig.6 Receiver test circuit and waveform

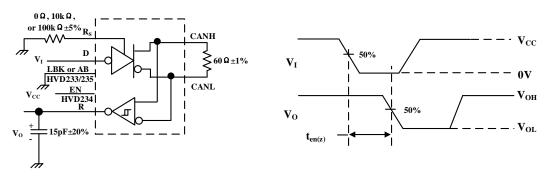

The input pulse is supplied by a generator having the following characteristics: PRR≤125kHz, 50% duty cycle, t_r<6ns, t_r<6ns.

Fig.7 t_(WAKE) test circuit and waveform (standby)

The input pulse is supplied by a generator having the following characteristics: PRR≤50kHz, 50% duty cycle, t_r<6ns, t_f<6ns.

Fig.8 t_(WAKE) test circuit and waveform (sleep)

The input pulse is supplied by a generator having the following characteristics: PRR \leq 125kHz, 50% duty cycle, t_r <6ns, t_f <6ns, Zo=50 Ω .

Fig.9 t_(LOOP) test circuit and waveform

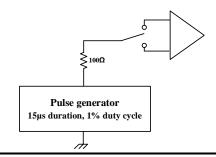


Fig.10 Overvoltage protection

ADDITIONAL DESCRIPTION

1 Sketch

The SIT65HVD234 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the $3.3V~\mu Ps$, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. It supports programmable data rates up to 1 Mbps. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

2 Current protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

3 Over temperature protection

SIT65HVD234 has the function of over temperature protection. After the over temperature protection is triggered, the current of the driving stage will be reduced, because the driving tube is the main energy consuming part. The current reduction can reduce the power consumption and thus reduce the chip temperature. At the same time, other parts of the chip still work normally.

4 Transient protection

Electrical transients often occur in automotive application environment, CANH, CANL of SIT65HVD234 have the function of preventing electrical transient damage.

5 Operating modes

The R_S pin mode, slop (pin 8) of the SIT65HVD234 provides three different modes of operation: high-speed mode, slope-control mode, and low-power mode.

5.1 High-Speed Mode

The high-speed mode can be selected by applying a logic low to the R_S pin (pin 8). The high-speed mode of operation is commonly employed in industrial applications. High-speed allows the output to switch as fast as possible with no internal limitation on the output rise and fall slopes. If the high-speed transitions are a concern for emissions performance slope control mode can be used.

If both high-speed mode and the low-power standby mode is to be used in the application, direct connection to a μ P, MCU or DSP general purpose output pin can be used to switch between a logic-low level (< 1.2 V) for high-speed operation, and the logic-high level (> 0.75 VCC) for standby.

5.2 Slope Control Mode

www.sitcores.com

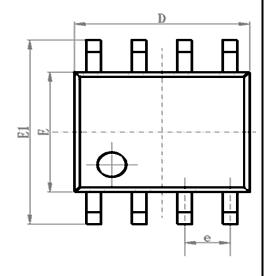
3.3V, Very Low Power Sleep Mode, High Speed CAN Transceiver

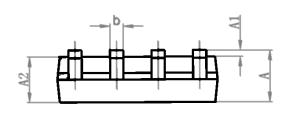
Electromagnetic compatibility is essential in many applications while still making use of unshielded twisted pair bus cable to reduce system cost. Slope control mode was added to the SIT65HVD234 devices to reduce the electromagnetic interference produced by the rise and fall times of the driver and resulting harmonics. These rise and fall slopes of the driver outputs can be adjusted by connecting a resistor from R_S (pin 8) to ground or to a logic low voltage. The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented with an external resistor value of $10k\Omega$ to $100k\Omega$ to achieve slew rate.

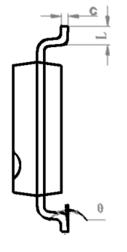
5.3 Standby Mode (Listen Only Mode)

If a logic high (> 0.75 VCC) is applied to R_S (pin 8), the circuit of the SIT65HVD234 enters a low-current, listen only standby mode, during which the driver is switched off and the receiver remains active. In this listen only state, the transceiver is completely passive to the bus. It makes no difference if a slope control resistor is in place. The μP can reverse this low-power standby mode when the rising edge of a dominant state (bus differential voltage > 900 mV typical) occurs on the bus. The μP , sensing bus activity, reactivates the driver circuit by placing a logic low (< 1.2 V) on RS (pin 8).

6 Enable control function

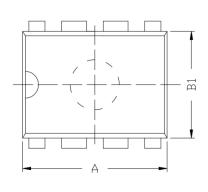

The enable control function of SIT65HVD234 is controlled by pin 5 EN. When EN is at a low level, the device circuit enters a very low power sleep mode, in which the driver and receiver are not working. The drive will remain dormant until the EN port detects a HIGH signal.

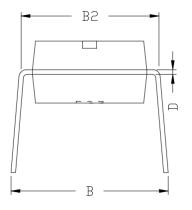


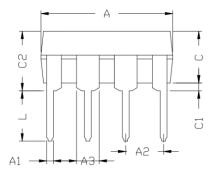

SOP8 DIMENSIONS

PACKAGE SIZE

TACKAGE SIZE					
SYMBOL	MIN./mm	TYP./mm	MAX./mm		
A	1.40	-	1.80		
A1	0.10	-	0.25		
A2	1.30	1.40	1.50		
b	0.38	-	0.51		
D	4.80	4.90	5.00		
Е	3.80	3.90	4.00		
E1	5.80	6.00	6.20		
e		1.270BSC			
L	0.40	0.60	0.80		
С	0.20	-	0.25		
θ	0°	-	8°		

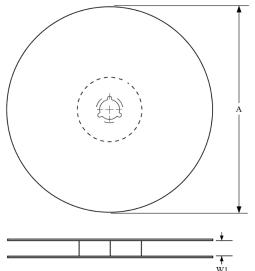


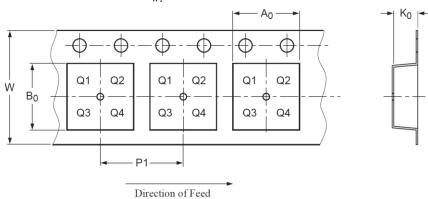



DIP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54TYP	
A3		1.525TYP	
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60



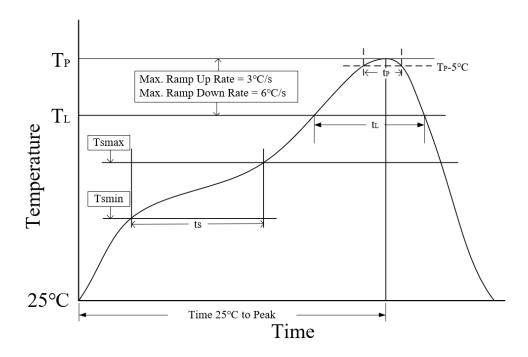


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the
Au	component width
В0	Dimension designed to accommodate the
В	component length
K0	Dimension designed to accommodate the
KU	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330±2	12.4±0.40	6.50±0.1	5.30±0.10	2.05±0.1	8.00±0.1	12.00±0.1

PIN1 is in quadrant 1


ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT65HVD234DR	SOP8	Tape and reel
SIT65HVD234P	DIP8	Tube

SOP8 is packed with 2500 pieces/disc in braided packaging. DIP8 is packed with 50 pieces/tube in tube packaging.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions
Ave ramp up rate (T _L to T _P)	3°C/second max
Preheat time ts	60-120 seconds
$(T_{smin}=150$ °C to $T_{smax}=200$ °C)	00-120 seconds
Melting time t _L (T _L =217°C)	60-150 seconds
Peak temp T _P	260-265°C
5°C below peak temperature t _P	30 seconds
Ave cooling rate (T _P to T _L)	6°C/second max
Normal temperature 25°C to peak temperature	8 minutes max
T _P time	o minutes max

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

VERSION HISTORY

Version number	Data sheet status	Revision Date
V1.0	Initial version.	October 2022